CompBioMed Software – Palabos

Software Project
Palabos is Lattice Boltzmann Method (LBM) solver, available as open source, and massively parallel. The team of Prof Bastien Chopard at University of Geneva (CH) has specialised it to solve a number of relevant biomedical problems, including simulation of blood flow, and bone cement penetration during vertebroplasty. The software has specific features to deal with biomedical problems, reading medical images. Palabos was tested on CADMOS BlueGene/Q (Switzerland), UniGe Baobab (Switzerland).
Palabos – Vertebroplasty Simulator: This solution, currently in its final stage of development, uses Palabos to provide a vertical solution for the pre-operative planning of vertebroplasty. Micro CT images of the damaged vertebral body are converted into an LBM model, which simulates multiple cement injections with different access point and cement volume. The simulation results predict exact filling patterns of the injected cement. Plans of future developments include converting the results into a finite element model, which will predict the increase in biomechanical strength with respect to the untreated vertebra.
Palabos – Flow Diverter Simulator: This solution, currently in its final stage of development, uses Palabos to provide a vertical solution for the pre-operative planning for the insertion of flow diverters. CT scan images of blood vessels with aneurysms or other anomalies are converted into an LBM model. Different types of flow diverters are numerically inserted to test their impact on the blood flow pattern. Simulation output includes wall shear stress distribution in the aneurysm to predict the rate of blood clotting.

Offered By

UniGe

Use scenario
Clinical research, Clinical decision support, In silico clinical trial.

HPC motivation
Solve unreducible model; Multiscale model; Strongly coupled model.

Contact
software@compbiomed.eu

Relevant links

Related Articles

  • Sha Li, Jonas Latt, Bastien Chopard, The application of the screen-model based approach for stents in cerebral aneurysms, Computers & Fluids, 2018.

Images