
This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 675451

The series is run in
collaboration with:

Webinar #4
Introduction to Biomedical Applications on High

Performance Computers
7 June 2018

The webinar will start at
12pm CET / 11am GMT

Dr Gavin J. Pringle (EPCC)

Webinar series

A Centre of Excellence in Computational Biomedicine

Dr Gábor Závodszky (UvA)

Moderated by Britt Van Rooij (UvA)

http://www.epcc.ed.ac.uk/
http://www.uva.nl/

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 675451

The series is run in
collaboration with:

Webinar #4
Introduction to Biomedical Applications on High

Performance Computers
7 June 2018

Welcome!

Dr Gavin J. Pringle (EPCC)

Webinar series

A Centre of Excellence in Computational Biomedicine

Dr Gábor Závodszky (UvA)

Moderated by Britt Van Rooij (UvA)

http://www.epcc.ed.ac.uk/
http://www.uva.nl/

Introduction to Biomedical
Applications on High Performance

Computers

13 June 2018

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 675451.

Dr Gavin J. Pringle
EPCC, University of Edinburgh

Gábor Závodszky
University of Amsterdam

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the material
under the following terms: You must give appropriate credit, provide a link to the license and indicate if

changes were made. If you adapt or build on the material you must distribute your work under the
same license as the original.

Note that this presentation contains images owned by others. Please seek their permission before
reusing these images.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Overview (1/2)

• Why HPC?
– Examples of who uses it

• Anatomy of a regular computer
– Performance considerations
– Multi-core
– OS, processes and threads

• Anatomy of a High Performance Computer
– Typical layout
– Modern HPC Architectures
– Parallel programming models

• Practical details
– Login and command line access
– Text editors
– Job submission via a batch systems

• Measuring Performance
– How many cores should I employ?!

Overview (2/2)

• Meet an HPC code and an HPC machine
– HemoCell
– Lisa @ SurfSARA

• How to set up the development environment
– What makes it different from working on your laptop?
– Obtaining the source
– File transfer
– Module system in a nutshell
– Compilation

• Executing a simulation
– Development short-runs on a login node
– Queueing system in practice (PBS)
– Handling multiple jobs

• Evaluate the output
– Parallel output and how to handle it
– Post-processing large datasets
– Visualize information of interest

Why HPC?

• Scientific simulation and modelling drive the need for
greater computing power.

• Single systems cannot not be provided that had enough
resource for the simulations needed.
– Making faster single chip is difficult due to both physical

limitations and cost.
– Adding more memory to single chip is expensive and leads

to complexity.
• Solution: parallel computing

– divide up the work among numerous linked systems.

What does a High Performance
Computer look like? UK’s ARCHER

Spain’s MareNostrum

Traditionally, who uses HPC?

• materials science / solid state physics
• computational chemistry
• biomolecular simulations
• particle physics
• environmental modelling

– weather & climate
– Geosciences
– oceanography

• many engineering applications
– designing trains, planes, automobiles, combustion engines, flight

simulators, mining, earthquake/tsunami warning systems…

GROMACS Biomolecular Example

Ligand-gated ion-channel membrane protein GLIC
(colored), embedded in a lipid membrane (grey),
solvated in water (not shown)

145,000 atoms

Taken from:
https://doi.org/10.1007/978-3-319-15976-8_1
(Lindahl E. et al.) (2015) Tackling Exascale Software Challenges in
Molecular Dynamics Simulations with GROMACS. In: Markidis S.,
Laure E. (eds) Solving Software Challenges for Exascale. EASC
2014. Lecture Notes in Computer Science, vol 8759

https://doi.org/10.1007/978-3-319-15976-8_1

NAMD Biomolecular Examples

CompBioMed Virtual Human video

• https://www.youtube.com/watch?v=1FvRSJ9W734

https://www.youtube.com/watch?v=1FvRSJ9W734

Generic Parallel Machine (computer cluster)

• Rough conceptual model is a collection of laptops
• Connected together by a network so they can all communicate

laptop1
laptop2

laptop3

laptop4

laptop5

• Consider each
laptop as a compute
node
• has a processor,

hard disk, memory,
etc.

• Each runs a copy of
an operating system
(Linux)

• If each processor
has 4 cores, total
system has 20 cores

HPC vs other types of computing

• HPC is one extreme in a continuum of computing:
– Individual desktop/laptop
– University research group / departmental machine (server or cluster)
– University-wide, regional or national-level HPC machine

• Commercial data centres (Amazon, Google, Facebook, etc.) have
enormous computing clusters
– These do not cater for scientific computing

• As such, they do not need a fast interconnect

• HPC machines optimised for traditional science applications:
– strong floating-point performance (“number crunching”)
– fast networking
– software stack that includes scientific / maths libraries

Anatomy of a regular computer

Anatomy of a computer

Si

2.2 GHz

Cache

Floating Point
Unit M

em
ory

Disk

Performance (time to solution) on a
single computer depends on…
• Clock speed

– how fast the processor is
• Floating point unit

– how many operands can be operated on and what
operations can be performed?

• Memory latency
– how fast can we access the data?

• Memory bandwidth
– how much data can we access in one go?

• Input/Output (IO) to storage
– how quickly can we access persistent data (files)?

Processors with multiple cores

Si
Shared Cache

M
em

ory
Core

0

Core
2

Core
1

Core
3

Disk

Operating System (OS)

• The OS is responsible for orchestrating access to the hardware
by applications.
– Which cores is an application running on?
– How is the memory allocated and deallocated?
– How is the filesystem accessed?
– Who has authority to access which resources?
– How do we deal with oversubscription (e.g. more applications

running than cores available).

• Running applications are controlled through the concepts of
processes and threads.

• HPC systems typically use Linux (of various flavours)

Processes

• Each application is a separate process in the OS
– A process has its own memory space which is not

accessible by other running process.
– Each process is scheduled to run by the OS – it can be tied

to a particular core or can migrate between cores

P0

P1

P2

P3 P4 P5

P6

Threads

• For many applications each process has a single thread…
• …but with the advent of multicore processors it is

becoming more common for a process to contain
multiple threads P0

P0(T1)P0(T0)

Anatomy of an High Performance Computer

Typical HPC system layout

Login Nodes Compute Nodes

Job
Scheduling

System
SSH

Terminal

Disk

Upload/
Download

Data

Compute node OS

• On HPC systems the “compute nodes” (“back-end nodes”)
often run an optimised OS to improve performance
– “Login nodes” (“front-end nodes”) nodes usually run a full OS
– Often means that you are “cross-compiling”

• Compiling on a front-end node which may be different architecture
for the target back-end nodes.

• How is the OS optimised?
– Remove features that are not needed (e.g. USB support)
– Restrict scheduling flexibility and increase interrupt period
– Remove support for virtual memory (paging)

• Your application will simply stop if it runs out of physical memory
• Often, nodes do not have their own disk

Parallelism

• All HPC machines are parallel architectures
• Often constructed by combining many pieces of

commodity hardware
• There are two fundamental parallel architectures:

– Shared-memory systems
– Distributed memory systems

• HPC systems typically combine features of both shared-
and distributed-memory architectures

Shared-Memory Architectures

• Multiple processors connected to memory
– Each processor has multiple cores

Memory

Shared-memory architectures

• Most computers are now shared memory machines due
to the advent of multicores
– Mobile phones and laptops included

• Difficult to build shared-memory systems with large core
numbers (> 1024 cores)
– Expensive and power hungry
– Some systems manage by using software to provide

shared-memory capability

Distributed-Memory Architectures

Memory Memory

Distributed-Memory architectures

• Each self-contained part is called a node.

• Almost all HPC machines are distributed memory
– All tend to be shared-memory within a node.
– With at least one multi-core processor

• The performance of parallel programs often depends on
the interconnect performance

Hybrid Architectures

Hybrid Architectures

• Almost all HPC machines fall in this class

• Most applications use a message-passing model for
programming
– Typically use MPI, with a single MPI task per core

• Can use threaded programming, i.e. OpenMP or POSIX
– NB Cannot be used across nodes

HPC Programming Models

Shared-Memory Concepts

• Threads “communicate” by having access to the same
memory space
– Any thread can alter any bit of data
– No explicit communications between the parallel tasks

P0

P0(T1)P0(T0)

a0

a1

a2

a3

a4

a5

a6

a7

Message-Passing Concepts

• Each process does not have access to another process’s
memory

• Communication is usually explicit
P0 P1 P2 P3

m

m

m

m

m

Hybrid Programming?

• Increased use of hybrid message-passing + shared
memory programming on hybrid architectures.
– MPI + OpenMP

• Usually use 1 or more MPI process per NUMA region and
then the appropriate number of shared-memory threads
to occupy all the cores
– multiple MPI processes per node gives best performance.

• Placement of processes and threads can become
complicated on these machines
– And will affect performance

36

Using HPC Systems

How does it work in practice?

Accessing HPC resources: SSH

• Systems usually accessed via SSH
– Natively on Mac and Linux machines
– Install PuTTY on Windows machines

Using HPC resources: File editing

• Editing files is often easiest using an “in-terminal” editor
such as emacs or vim

What is a batch system?

• Mechanism to submit your jobs to the compute nodes
– control access by many users to shared computing resources

• Queuing / scheduling system for users’ jobs
• Manages the reservation of resources and the job

execution
• Allows users to “fire and forget” large, long calculations or

a single large group of jobs
– Called “production runs”
– Typically not interactive
– Typically no GUI

Why do we need a batch system?

• To ensure the machine is utilised as efficiently as possible
• Ensure all users get a fair chance to use compute resources

– demand often exceeds supply
• To track usage

– accounting and budget control
• To mediate access to other resources

– software licences, etc.

Reservation and Execution

• When you submit a job to a scheduling system you
specify the resources you require:
– Number of cores, maximum job time, etc.

• The scheduling system then reserves a block of resources
• You can then use that block as you want, for example:

– For a single job that spans all cores and the full time
– For multiple shorter jobs in sequence
– For multiple smaller jobs running in parallel

Batch system queues

• Jobs contend for resources within their queue
• Queue - logical scheduling category, can correspond to:

– Different time constraints
– Special feature nodes (large memory, GPUs, etc.)
– Nodes reserved for access by a subset of users

• training courses
• Urgent Computing

– Surgical simulations, Modelling forest fires, etc.

• Some HPC systems choose your queue; others require to
you name it explicitly

How to use a batch system

1. Write a job script specifying
– Number of cores, maximum job time, etc.
– Commands to run your calculations

2. Submit your job to the batch system
– Job placed in a queue by a scheduler
– Will be executed when there is space and time available
– Job runs until

• it finishes successfully, or
• It is terminated due to errors, or
• It exceeds the your specified time limit

3. Examine outputs and any error messages

Job script example – PBS

#!/bin/bash –login
#PBS -N Weather1
#PBS -l select=3:ncpus=36
#PBS -l walltime=1:00:00
#PBS –A d411
cd $PBS_O_WORKDIR
module load fftw
mpirun –n 108 weathersim

Parallel
application
launcher

Number of parallel
instances of program
to launch

Program name

Requested job duration

Changing to directory to run in

Number of nodes and
number cores per node

Job name
Linux shell to run job script in

Budget to employ

PBS Batch system commands and job states

PBS job state Meaning
Q The job is queued and waiting to start

R The job is currently running

E The job is currently exiting (not error)

F The job is finished (not failed)

H The job is held and not eligible to run

Job status PBS
Job submit command qsub <batch_script.txt>

Job status command qstat –u $USER

Job delete command qdel <job_id>

Using HPC Systems

Example: how many cores should I employ for my simulation?

Why care about parallel performance?

• Why do we run applications in parallel?
– so we can get solutions more quickly
– so we can solve larger, more complex problems

• If we use 10x as many cores, ideally
– we’ll get our solution 10x faster
– we can solve a problem that is 10x bigger or more complex
– unfortunately this typically not the case…

• Measuring parallel performance can help us understand
– whether an application is making efficient use of many cores
– what factors affect this
– how best to use the application and the available HPC resources

Performance Metrics

• How do we quantify performance when running in
parallel?

• Consider execution time T(N,P) measured whilst running
on P cores with problem size/complexity N

• Speedup:
– S(N,P)=T(N,1)/T(N,P)

• Time on one core divided by time on P cores

• Parallel efficiency:
– E(N,P)=S(N,P)/P

• Speedup on P cores divided by P

Typical strong scaling behaviour

0

50

100

150

200

250

300

0 50 100 150 200 250 300

Sp
ee

d-
up

Number of cores

Speed-up vs Number of cores

Ideal
actual

Parallel Scaling

• Scaling describes how the runtime of a parallel application
changes as the number of processors is increased

• Strong Scaling (increasing C, constant N)
– problem size/complexity stays the same as the number of cores

increases, decreasing the work per core

• Weak Scaling (increasing C, increasing N)
– problem size/complexity increases as the number of cores

increases, keeping the amount of work per core the same.

I have a particular simulation to run:
how many cores should I employ?

• Let’s say you have access to a target HPC machine with, say
– 500 nodes, with 32 cores per a node

• Can I use all the cores in the 500 nodes?
– Code might run 16,000 times faster!?

• Depends on the package running the simulation
– Is it parallelised using threads only?

• Limited to a single node with its 32 cores
– Is it parallelised using MPI?

• Can use all 16,000 cores
• But, how many cores to use?

– We need to benchmark!?

52

How to benchmark? (1/2)

• First, pick a typical target simulation
• Large enough to reflect he characteristics of your target

simulation
• Small enough not to burn too much resources

– Aim for a simulation which does not run faster than 1
second
• To avoid OS flutter

– But not longer than, say, 10 hours
• So we don’t waste cycles not producing science

53

How to benchmark? (2/2)

• All benchmarks should be run multiple times
– Typically one MPI task and/or one thread per core is best

• Exclusive node use (only you have access to the nodes)
– Run three times and take minimum
– Measures the fastest times

• Shared node use (you share access to the nodes)
– Run 10 times and record associated statistics

• minimum, maximum, mean and 95% confidence limits
– Measures how “busy” the machine can be

54

Benchmarking Example

• QIIME™ is an open-source bioinformatics pipeline for
performing microbiome analysis from raw DNA
sequencing data
– Quantitative Insights Into Microbial Ecology.
– pronounced chime
– www.qiime.org

• Python scripts, parallelised using threads

55

Example execution times for
a particular Qiime routine

56

Execution times discussion

• Typical Execution Times graph
– Log/log graphs present data clearly
– As the core count increases: time reduces, levels out and

then starts increasing
• Communication starts to dominate over computation

• Execution times alone shows that 16 cores is the fastest
– but is that an efficient use of the cores?
– what about the Parallel Efficiencies?

57

Parallel Efficiencies for Qiime on Cirrus

58

Discussion of Parallel Efficiencies

• A typical target parallel efficiency is 70%.
– Some groups use 50%, others use 80%.
– Using 70% gives the target number of cores as 8

• The efficiency for the fastest execution time
– 16 cores has ~46%

• Very poor efficiency

• The efficiency when using all the cores in one node?
– 32 cores has ~21%

• Parallel Efficiency plots often reveal much more than execution
times alone
– i.e. “jump” from 8 to 16 cores may be due to NUMA region affects

59

So is the target core count
for our example is 8?

• Most efficient core count is 8 for this example
– 16 may be faster but it is not efficient
– Do not waste your project’s shared time budget

• “cycles”

• However, some HPC platforms charge you by the node
– We would pay for all 32 cores
– Fastest result now wins

• 16 cores is best choice
– NB further testing might show 24 cores is even faster

60

HPC Jargon (1/2)

• HTC: High Throughput Computing
– Task Farms on HPC

• HPDA: High Performance Data Analysis
– Data analysis performed on huge nodes

• Network
– Interconnect, Communications Fabric, hardware used to send

messages between cores on different Nodes
• Nodes

– Servers, Shared Memory System, Boxes
• Processors

– Sockets, CPUs
• Cores

– CPUs

HPC Jargon (2/2)

• Memory hierarchy
– Cache, L1, L2, L3, NUMA regions: placing groups of tasks within particular

memory regions affect performance
• Scripts

– ASCII files containing commands
• Batch scripts: batch system, operating system, executables, etc.

• Time budget
– Cycles, core hours, CPU hours, CPUh

• Production Runs
– Simulations which are not tests but are producing science

• Efficiency
– How fast a task is compared to a single core

• Sometimes a group of cores or a single node if simulation is huge
• Scaling

– Particular simulations with a fixed size are said to ‘scale’ if they remain
efficient as the number of cores becomes larger

HPC Summary

• HPC driven by need for more computing power
• HPC is synonymous with parallel computing

– Parallelism is available at many levels
– Parallel computing is now expanding to all computers
– Good scaling to large numbers of tasks is difficult

• Access is still usually via command line
– Need to learn to use an in-terminal editor

• Access to compute resources mediated by batch job
submission system

• Benchmark to determine how many nodes/cores to use

Part II - Overview

• Meet an HPC code and an HPC machine
– HemoCell
– Lisa @ SurfSARA

• How to set up the development environment
– What makes it different from working on your laptop?
– Obtaining the source
– File transfer
– Module system in a nutshell
– Compilation

• Executing a simulation
– Development short-runs on a login node
– Queueing system in practice (PBS)
– Handling multiple jobs

• Evaluate the output
– Parallel output and how to handle it
– Post-processing large datasets
– Visualize information of interest

HemoCell - A high-performance framework for dense cellular suspension flows

2

• www.hemocell.eu

• Open-source code (AGPLv3)

• Fully validated

• Suitable for high hematocrits

• Suitable for high shear-rates

• Three dimensional version

• Two dimensional version
Higher performance / larger domains

http://www.hemocell.eu/

Deployed on several HPC systems

3

Lomonosov (MSU, Moscow)Aspire I (NSCC, Singapore)

Cartesius and Lisa (SurfSARA, Amsterdam)

Eagle (PSNC, Poznan)

Marenostrum (BSC, Barcelona)

Supermuc (LRZ, Munich)

Superman (BME, Budapest)

Sanam (KACST)

HPC allows for large domains!

4

~ 8 million cells = 2 mm3 of blood

Simulation cases

6

Mills et al., Mech. Chem. Biosyst., 2004.

Case #1 Case #2

Suggested development environment

7

• Suggested environment - make sure you have an app. installed for every category:

- Terminal + ssh: putty / termius / ssh / …

- File transfer: winscp / cyberduck / mc (shell connection) / scp / totalcmd /…

- Editor: SublimeText / vim / emacs / Notepad++ / joe / nano / …

- Visualizer: Paraview 5.5 / (VisIt) / …

Transfer files (scp, sftp)

8

Tip: It can be convenient to set up a local file
editor in your scp client.
This way you can edit your files locally with
your favourite editor, and they are
automatically uploaded when you save.

Obtain HemoCell

1. Go to www.hemocell.eu
2. Navigate to ‘Docs & Downloads’
3. Click the ‘Code repository’ button
4. Download zip archive from GitHub

a) Direct download
b) Copy URL and use download manager / wget

5. Unzip it
6. Run ‘setup.sh’ Note: never do something like this blindly!

7. Compile a simulation case

9

http://www.hemocell.eu/

Terminal session #1

10

Let’s discuss the next phase while the code compiles!

11

Source: https://xkcd.com

Execution

• Small simulations (such as ”stretchCell”) can be
developed and executed locally on your
notebook:

12

• Larger simulations (such as ”pipeflow”) can be
developed locally, but the execution requires a larger
machine:

“Test – develop” cycle

• Testing the code if it start up might be possible on the login node.
• Better to submit it to a designated “short” queue.
• Alternatively, request an interactive session.
• When you are convinced everything is in order, submit a larger run!
• You can submit multiple jobs and use command-line tools to manage them.
• After the execution of the simulation run post-processing:

– Lightweight post-processing locally on your computer
– File-operation heavy through the login node
– Computation heavy as a separate job

13

Terminal session #2

14

Let’s check the results!

15

1. Open Paraview

2. File -> Open File -> navigate to ‘tmp’
folder of the simulation

3. Select RBC_HO…xmf

4. Select ‘Xdmf Reader’ and NOT Xdmf3!

5. On the ‘Properties’ panel to the left
press ‘Apply’

6. Put colouring to ‘Total force’

7. Animate with the ‘Play’ button

Paraview session

16

Webinar series

A Centre of Excellence in Computational Biomedicine

Q&A

To pose a question, you can write your question
in the “Questions” tab

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 675451

The series is run in
collaboration with:

Webinar series

A Centre of Excellence in Computational Biomedicine

Thank you for participating!

Visit the CompBioMed website (www.compbiomed.eu/training)
for a full recording of this and other webinars,

to download the slides
and to keep updated on our upcoming trainings

http://www.compbiomed.eu/)

