

Webinar #5 **High Throughput Molecular Dynamics** for Drug Discovery 25 October 2018

The webinar will start at 12pm CEST

Speaker: Adrià Pérez (UPF)

Moderator: Ben Czaja (UvA)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 675451

The series is run in

Webinar #5 **High Throughput Molecular Dynamics** for Drug Discovery

25 October 2018

Speaker: Adrià Pérez (UPF)

Welcome!

Moderator: Ben Czaja (UvA)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 675451

The series is run in

Overview

- Introduction
 - Drug Discovery
 - MD simulations
 - Computer-aided Drug Discovery
- MD Simulations: State of the art
 - Decreasing computational cost of MD
 - Markov State Models
 - Adaptive Sampling
- Example case: Benzamidin-Trypsin
 - System preparation
 - Setting up simulations
 - Analysis: Predicting affinity

- The process in which new medications (drugs) are discovered.
- Drugs act on biological targets (normally proteins) by binding to them to change their behaviour or function.
- The Drug R&D is mostly done in vitro and in silico.
- In silico approaches can be used in all the three initial stages of Drug Discovery.

Protein-ligand binding

- One of the goals in the first stages of drug discovery is to predict whether a **given molecule** will **bind** to a **target** and, if so, how strongly (and how fast).
- Macroscopic physical properties can be calculated from the microscopic binding process.

Thermodynamics of binding (taken from https://dsdht.wikispaces.com/)

Depiction of a binding event (taken from https://www.youtube.com/user/ps3grid)

Molecular Dynamics simulations

- Molecular Dynamics (MD) is a computational method that allows us to simulate an atomic model of the system of interest (e.g. protein-ligand binding).
- Simulations allows us to observe the mechanical movement of the system **along time.**
- From an MD trajectory, one can extract both strucutral and kinetic information with high accuracy.

MD: Molecular Mechanics Force-fields

- There are different type of atomic interactions: bonded and non-bonded.
- Energy functions describe the different types of interactions.
- The **parameters** of the functions constitute a molecular **force-field**.

6 $U = \sum_{a} \frac{1}{2} K_{b} (b - b_{a})^{2} + \sum_{a} \frac{1}{2} K_{b} (\theta - \theta_{a})^{2}$ + [K, [1-cos(n+5)] All Torsion Angles J + \sum \varepsilon \left[(1%) 12 - 2(1%) \right] All nonbonded pairs + 2 3329i9j/r All partial charges

MD: Newtonian Time-propagation

- An MD simulation trajectory can be generated by iteratively applying an integration algorithm
- This algorithm is based on the Newton equations of motion
- Integration step in the order of magnitude of femtoseconds (1 fs = 1 x 10⁻¹⁵ s)
- Focus on the optimization of algorithms to do MD

Give atoms initial positions $\mathbf{r}^{(t=0)}$, choose short Δt

Get forces $\mathbf{F} = -\nabla U(\mathbf{r}^{(t)})$ and $\mathbf{a} = \mathbf{F} / \mathbf{m}$

Move atoms: $\mathbf{r}^{(t+\Delta t)} = \mathbf{r}^{(t)} + \mathbf{v}^{(t)} \Delta t + \frac{1}{2} \mathbf{a} \Delta t^2 + \dots$

Move time forward: $t = t + \Delta t$

Computer Aided Drug Discovery (CADD)

- The method of choice usually depends on a speed / accuracy tradeoff.
- MD simulations provide a more accurate solution, while its computational cost keeps decreasing.

Practical application

Cryptic pocket detection in Dopamine D3 receptor (GPCR)

Ferruz et al. (2017) Scientific Reports: doi:10.1038/s41598-018-19345-7

Decreasing computational cost of MD

- The first simulation of protein dynamics dates from 1977 and consisted of a 9.2 ps trajectory of the bovine pancreatic trypsin inhibitor (BPTI) in vacuum.
- In 2010, a 1 ms trajectory of the same protein in explicit solvent was reported, which constitutes a 100 million increase in trajectory length compared to the first simulation

ComoBin

PL

Decreasing computational cost of MD

• Implementation of MD codes for GPUs

• Distributed computing projects

• Development of special-purpose supercomputers (ANTON)

High-throughput MD

Naive Sampling

Adaptive Sampling

Adaptive Sampling

Markov State Models

Markov State Models

HTMD

A python programmable environment for biomolecular discovery

System building	Simulation	Visualization	Analysis	Protocols
 Molecule manipulation atomselection QM parametrize Solvate, lonize Build Charmm/Amber Protein Prep 	 ACEMD integrated, but HTMD is generic Deployment locally, cluster, Amazon EC2 Docking (vina) Adaptive sampling Standard sampling 	 3D viz integrated webgl VMD Pathways 	 Dimensionality reduction Projections Markov state models (pyEmma) Affinities Kinetics 	 Equilibration protocols Allosteric detection Ligand binding Conformation analysis Pocket discovery Protein placement

www.htmd.org

To pose a question, you can write your question in the "Questions" tab

Thank you for participating!

...don't forget to fill in our feedback questionnaire...

Visit the CompBioMed website (<u>www.compbiomed.eu/training</u>) for a full recording of this and other webinars, to download the slides and to keep updated on our upcoming trainings. For any other question: adria.perez@upf.edu

The series is run in collaboration with: **VPH Institute**

