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4 Executive Summary 
CompBioMed end users are able to gain direct access to one or more of its HPC 
ecosystems of Tier0, Tier1 and Tier2 platforms. CompBioMed offers expert HPC 
assistance, along with powerful tools for debugging, profiling and workflow managers, 
to ensure simulations run efficiently on up to at least tens of thousands of cores on 
today’s HPC systems. Moreover, application authors also exploit these tools to prepare 
for exascale machines. This report details these tools, and presents progress to date on 
four of the largest codes, namely Alya, HemeLB, HemoCell and BAC, achieved by 
CompBioMed in collaboration with co-existing CoEs and H2020 programmes. Lastly, 
for added value, detailed technical guidance is presented on how to improve 
applications in general to efficiently exploit future exascale systems. 

5 Introduction 
End users are looking to run their research simulations efficiently on CompBioMed HPC 
resources, and this document reports access mechanisms to these resources and the 
tools available to help run their codes efficiently, both on current and future resources, 
including exascale. In particular, the document describes progress in and impact of 
deployment of tools and services in support of complex workflows, including 
multiscale models, on available HPC environments. This report does not cover the 
work that was done to port the applications to the CompBioMed platforms, but does 
describe work done using these tools to prepare CompBioMed solutions/applications 
for future exascale systems. 
 
This document reports on some of the results of activities conducted in WP2 Task 2.6: 
 
Task 2.6: Develop Plans for and Implement the Upscaling of CompBioMed Production 
Applications for Future HPC Platforms, Including those Heading Toward the Exascale 
(M12-M30) [Deep Track] 
 
Leader UEDIN (6 PM); Partners: UCL (6 PM), UvA (6), UOXF (6), SARA (6), BULL (6) 
 
Use co-design principles in partnership between application code developers, HPC 
centres and hardware vendors to plan optimal development of future releases of the 
exemplar codes in this project so as to ensure that they will run effectively on 
forthcoming architectures on the path to exascale, as well as on GPGPU and novel 
architectures such as Intel Xeon Phi co-processors. These applications will not only 
consist of monolithic codes running across large numbers of cores within the 
production partition of a computer, but in many cases are componentised workflows, 
including multiscale applications, that will need to be optimally mapped onto these 
architectures. Performance prediction tools will be applied for some of the complex 
componentised applications to forecast performance on emerging systems and the 
impact on future biomedical applications. 
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The structure of the remainder of this deliverable is as follows. The following Section, 
Section 6, describes the CompBioMed HPC ecosystem and how end users can access 
HPC resources. Following this, we then describe the Tools and Services, including Deep 
Track tools, that have been deployed on these CompBioMed HPC resources, 
specifically for debugging, profiling and workflow management. The next Section 
details how CompBioMed collaborates with other Centres of Excellence and H2020 
programmes, namely POP, ComPat, and VECMA. Following, in Section 9, we describe 
the progress on scaling our largest codes, namely Alya, HemeLB, HemoCell and BAC, in 
preparation for Exascale. Section 9 also contains three overviews: the first on our 
experience with the profiler Scalasca and our collaboration with POP; the second 
describes the work done by Bull under Task 2.6 to improve the performance of 
HemoCell; and the third presents an overview of a collaboration with ComPat to 
improve HemeLB and BAC. The full reports of the latter two are presented in the 
Appendices A and B, respectively. Finally, we present WP4’s guidance on how to 
prepare applications to scale on thousands of cores on both the HPC systems of today 
and of the exascale systems of the future. Appendix A also includes an Exascale Crib 
Sheet for programmers. 

6 Access to CompBioMed HPC systems 

6.1 The CompBioMed HPC systems 
Some of CompBioMed’s Core Partners, namely BSC, University of Edinburgh, and 
SURFsara provide access to their HPC systems, either through participation in the 
Centre of Excellence, or via PRACE Tier0 access. These systems are ARCHER and Cirrus, 
at EPCC (University of Edinburgh), UK; MareNostrum, at BSC, Spain; along with 
Cartesius and Lisa at SURFsara, the Netherlands. Further, some of CompBioMed 
Associate Partners also offer HPC access, specifically SuperMUC and SuperMUC-NG 
(anticipated), at the Leibniz Supercomputing Centre, Germany; and Prometheus, at 
Cryfronet, Poland. Additionally, CompBioMed has access to HPC systems outwith of its 
Core and Associate Partners offerings, such as Piz Daint, at CSCS, Switzerland; and 
three massive platforms in the US, namely BlueWaters at the National Center for 
Supercomputing Applications, Titan at Oak Ridge Leadership Computing Facility, and 
Theta at the Argonne Leadership Computing Facility. Peter Coveney is currently 
anticipating major access to Summit, number one on the current Top500 with a peak 
performance of 200 petaflops, by early in 2019; and there are hopes to get access to 
Aurora also at the Argonne Leadership Computing Facility. 
 

6.2 How to get Access 
End users from both Core and Associate Partners may apply for access to many of 
these systems via the email address allocations@compbiomed.eu, where they should 
apply with a brief description of what HPC platform they wish to access, what 
simulations they are interested in performing, what software they aim to employ, and 
how many core hours and disk space they require. To gain access to Tier0 resources, 
we encourage end users to apply to PRACE. UCL also command access to a vast suit of 
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supercomputers throughout Europe and the US, including SuperMUC(-NG), Blue 
Waters, Titan and Summit, and are able to allocate time to collaborators on these 
systems. 
 
Once permission has been granted, end users are then put in contact with the 
associated HPC centre, who will guide them through the process of direct access to the 
HPC platform, using either SSH, which requires a username/password combination, or 
GSISSH, which requires Certificates. Both access methods grant the end users access 
via the Unix command line interface. 
 
Either the target simulation codes are already ported and tuned to the existing target 
HPC architecture, or the end user, working closely with the HPC centre’s experts, can 
install the simulation codes themselves. However, the efficiency of a tuned simulation 
code depends on the target simulation, e.g. a small simulation will not scale to 1000s 
of cores; thus, HPC centres offer a range of tools and services to ensure the target 
simulations run efficiently.  
 
The following tools and services describe how a particular simulation can be tuned to 
the target HPC platform. It is important to note that, once ported, these same tools 
and services can be used to prepare the codes for future exascale HPC systems using 
that current HPC platform. In conjuncture with these tools, we are preparing for 
exascale systems via the co-design process, wherein vendors work with end users to 
ensure future supercomputers are constructed to ensure key applications will run 
efficiently. CompBioMed is actively involved in co-design, and this is addressed in 
Section 10.2. 

7 Tools and Services to Improve Efficiency 
This Section describes the tools and services, including deep track tools, which are 
deployed on the CompBioMed HPC resources at BSC, EPCC and SURFsara. 
 
The tools and services for improving a simulation’s efficiency can be grouped into the 
following types: debugging tools, profiling tools, and workflow management tools. 
Debugging tools are powerful accessories which are essential when a simulation 
crashes and/or produces the incorrect expected result. Profiling tools produce reports 
on past simulations to provide insight on where the simulation is inefficient, such as 
highlighting bottlenecks due to load imbalance, or I/O, or MPI communications, etc. 
Workflow management tools enable multi-component simulations, where the input to 
one simulation is formed from the output of another simulation; or multi-scale 
simulations, where multiple simulations of different time/length scales, are tightly 
coupled together; or enable the end user to run ensemble runs, where the same code 
is run simultaneously running slightly different simulations, often referred to as HTC. 
 
Outwith of CompBioMed, our end users may access the POP CoE’s resources to 
increase the scalability of their simulations, to ensure efficiency and prepare for 
exascale. For instance, UCL have worked with POP to scale HemeLB up to 250,000+ 
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cores. At such a core count, it is found that standard profiling and debugging tools, and 
parallelisation software such as MPI-2, fail due to lack of functionality, the massive 
scales involved, etc. To this end, Peter Coveney is working with the MPI Forum (in 
particular with Tony Skjellum at University of Tennessee) to get MPI-4 released in 
2020, through development work on a use case of HemeLB. This work will ensure that 
64-bit communications will function efficiently at very large core counts. 
 
Inside CompBioMed, the HPC Core Partners, namely BSC, EPCC, and SURFsara, have 
enabled the most common debugging tools, profiling tools, and Workflow manager 
tools which enables CompBioMed end users to improve their simulation’s efficiency 
and prepare for exascale. The following section describes the tools currently enabled 
at the three HPC sites. 
 
It is interesting to note that some of these tools, whilst ensuring efficient use of the 
target HPC system, may not be suitable for exascale machines, given they currently fail 
at larger core counts, e.g. Parmetis has been seen to fail on 50,000 cores. To this end, 
CompBioMed are actively testing other tools, such as ALL from the CoE E-CAM, which 
is currently showing real potential. 
 

7.1 Debugging tools 

 Valgrind: Memory debugging 
Valgrind is an instrumentation framework for building dynamic analysis tools. There 
exist Valgrind tools that can automatically detect many memory management bugs 
and threading bugs, and can profile programs in good detail. 
 
Deployed at BSC, EPCC and SURFsara. 

 Padb - parallel application debugger 
Padb is a Job Inspection Tool for examining and debugging parallel programs. Primarily, 
it simplifies the process of gathering stack traces on compute clusters; however, it also 
supports a wide range of other functions. It is an open source, non-interactive, 
command line, which can be used within scripts, intended for use by both 
programmers and system administrators. 
 
Deployed at SURFsara. 
 

 Cray ATP 
Cray ATP (Abnormal Termination Processing) is a tool that monitors your application 
and, in the event of an abnormal termination, it will collate the failure information 
from all the running processes into files for analysis. 
 
Deployed at EPCC 



    D2.2 Report on Deployment of Deep Track Tools and Services to Improve  
Efficiency of Research and Facilitating Access to CoE Capabilities 

 

PU Page 11  Version 0.3 
 

“This project has received funding from the European Union’s Horizon 2020 research and innovation 
programme under the Grant Agreement No 675451“ 

 

 DDT Debugger 
DDT is a tool produced by Allinea Software, now part of Arm of Warwick, UK, and is 
employed for debugging scalar, multi-threaded and large-scale parallel applications, 
which is widely used for debugging MPI and threaded (pthreads or OpenMP). 
 
Deployed at BSC and EPCC. 

 TotalView 
TotalView is a comprehensive debugging tool for parallel applications. It is easy-to-use, 
supports multiple platforms, compilers, and programming languages, including the 
MPI, OpenMP, OpenACC and CUDA parallel programming paradigms. 
 
Deployed at EPCC and SURFsara. 

 GDB (GNU Debugger) 
The standard GNU debugger: GDB. This debugger currently only supports the 
command line interface. 
 
Deployed at BSC, EPCC and SURFsara 
 

7.2 Profiling tools 

 Scalasca 
Scalasca is a powerful and popular profiling tool, and stands for SCALAble performance 
analysis of large SCale Applications. Scalasca is an open-source toolset that can be used 
to analyse the performance behaviour of parallel applications and to identify 
opportunities for optimisation. 
 
It is available with an open-source license from www.scalasca.org, and offers flexible 
runtime summarisation/profiling and event tracing. Its primary focus is on MPI, 
OpenMP and hybrid codes, namely which employ both MPI and OpenMP. Applications 
must be prepared in advance via “instrumentation”: MPI usage is instrumented simply 
by linking the application to the appropriate library, whilst OpenMP usage is 
instrumented by recompiling from source using Scalasca's own modified version of the 
target compiler.  
 
Furthermore, it was recently extended to support a variety of other threading 
paradigms, such as Pthreads, Qt, and CUDA/OpenCL/OpenACC, and it supports most 
HPC systems, including IBM Blue Gene, K computer, Cray, and also heterogeneous 
systems like SURFsara’s JURECA “Cluster+Booster” (Xeon + Xeon Phi). 
 
It is CompBioMed’s experience that Scalasca is the best profiling tool when working on 
hundreds of thousands of cores, where other tools have been seen to fail at a few tens 
of thousands of cores. 
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Deployed at BSC, EPCC and SURFsara. 

 Paraver 
Paraver, a performance analyser based on traces with flexibility to explore the 
collected data. The associated Dimemas simulator can be used to predict the 
application's behaviour under different scenarios. Performance analytics modules 
extract insight from the raw performance data. 
 
Deployed at BSC. 

 Intel Parallel Studio XE and Vtune 
This software development product developed by Intel facilitates native code 
development on Windows, macOS and Linux in C++/C and Fortran for parallel 
computing. In addition to Intel compilers and specialised libraries it provides also 
debuggers, memory analysers, and profiling tools, via Vtune. 
 
Deployed at EPCC and SURFsara. 

 gperftools: profile and call-graph 
With gperftools it is possible to profile a program and create a call-graph. Profiling can 
be done on several levels, including performance studies of individual lines of code. 
Another advantage is that the binary can be used as-is. The tools work in principle with 
any binary created by either Gnu or Intel compilers. 
 
Deployed at SURFsara. 

 CrayPat 
CrayPat can perform two types of performance analysis: sampling experiments and 
tracing experiments. A sampling experiment probes the code at a predefined interval 
and produces a report based on these statistics. A tracing experiment explicitly 
monitors the code performance within named routines. Typically, the overhead 
associated with a tracing experiment is higher than that associated with a sampling 
experiment but provides much more detailed information. 
 
Deployed at EPCC. 

 Arm MAP 
Arm MAP, is an application profiler produced by Allinea Software now part of Arm of 
Warwick, UK, for profiling the performance of C, C++ and Fortran 90 software, 
parallelised using MPI and/or OpenMP. 
 
Deployed at BSC and EPCC. 
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7.3  Workflow management tools 

 Taverna 
In Taverna, workflows are represented in terms of direct acyclic graphs. Each node 
contains a part of the workflow in terms of calls to external software. These building 
blocks can be run independently, provided that all the required inputs are available at 
runtime. The graph edges represent message passing operations between the 
workflow building blocks.  
 
Taverna is provided in two versions aimed at prototyping and production phases, 
respectively. Taverna Workbench is a desktop client including a GUI to ease the 
creation and editing of workflows through a drag and drop interface.  
 
Deployed at BSC, EPCC and SURFsara. 

 MMSF and Muscle 
Multiscale Modelling and Simulation Framework (MMSF) and MUSCLE: Multiscale 
Modelling and Simulation Framework (MMSF) for designing, programming, 
implementing and executing multiscale applications. The MMSF offers many benefits: 
a clear methodology, software and algorithm reuse, the possibility to couple new and 
legacy codes, heterogeneous distributed computing, and access to unprecedented 
computing resources. The framework is open-source and has been co-developed by 
CompBioMed Core Partners. It allows a more fine-grained and performance oriented 
coupling of simulation kernels than Taverna. 
 
Deployed at BSC, EPCC and SURFsara. 

 Radical-Cybertools 
This workflow tool seeks to address the limitations imposed by HPC queuing systems 
to create efficient large-scale hybrid applications. An example of such an application is 
the Binding Affinity Calculator (BAC), a decision support tool which uses molecular 
level computer simulation to reliably predict the binding affinities (free energies) of 
molecules with target proteins, and therefore identify those most likely to bind to the 
protein. BAC has been built to integrate and automate the multi-step process of model 
building, simulation, and data analysis for molecular level drug-receptor interactions. It 
constitutes a sophisticated computational pipeline built from selected software tools 
and services, and which relies on access to a range of computational resources. 
 
BAC depends on the ability to perform hundreds of separate parallel simulations on a 
high performance computing platform, each of which can require 50-200 cores 
depending on the system. The BAC workflow automates much of the complexity of 
running and marshalling these simulations, as well as collecting and analysing data. 
This requires a workflow management tool that integrates closely with the queuing 
system on an HPC resource, in order to efficiently allocate replicas between available 
compute nodes, and also manage the execution and data staging between different 
steps of the simulation protocol. For this purpose, BAC uses the Pilot Job Manger, part 
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of RADICAL-Cybertools, a suite of abstractions-based and standards-driven tools that 
provide a common, consistent, and scalable approach to high-performance and 
distributed computing.  
 
Deployed at EPCC. 
 

 Stopos 
The Stopos software, developed by SURFsara and available on both their HPC systems, 
gives the opportunity to define and get lines, which can be used as parameters, in an 
orderly way. Stopos takes care that these lines are given out one after each other. It 
can be used to submit many jobs each with about the same content, but with different 
parameters for the program to run. Examples are parameter scans and Monte-Carlo 
simulations. Using Stopos, it is quite easy to build jobs that use the nodes of the 
computing system in an optimal fashion. Moreover, it is possible to correct for failing 
jobs (time limit, system problems etc). 
 
Deployed at SURFsara. 
 

8 Collaboration with other CoEs 
Several CompBioMed applications undergo almost continuous performance 
monitoring and improvement, such as Gromacs, BAC, HemoCell, Alya, and Palabos. 
These improvements are not only done by CompBioMed staff, but also in collaboration 
with other EU programmes. 

 POP 
The Performance Optimisation and Productivity Centre of Excellence in Computing 
Applications provides performance optimisation and productivity services for academic 
and industrial codes in all domains. 
 
Highly scalable codes can effectively use thousands of compute nodes (a compute 
node contains many cores); however, equally scalable performance tools are needed 
to assist with additional tuning by quantifying parallelisation inefficiencies and 
identifying optimisation opportunities. POP assessments help characterise parallel 
application performance and scalability by identifying inefficiencies that constitute the 
most productive opportunities for optimisation. 
 
CompBioMed and POP have collaborated on improving the performance of HemeLB on 
the BlueWaters Cray XE in the US (POP-AR-102: HemeLB on Cray XE for CompBioMed). 
HemeLB is a lattice-Boltzmann code for simulation of hæmodynamics in complex 
geometries. 

 ComPat 
ComPat (http://www.compat-project.eu) is a science driven project on Computing 
Patterns for High Performance Multiscale Computing. The urgent need to push the 
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science forward, and stay world leading in simulation driven science and engineering is 
its major motivation. 
 
Multiscale phenomena are ubiquitous, and they are the key to understanding the 
complexity of our world. Despite the significant progress achieved through computer 
simulations over the last decades, researchers are still limited in their capability to 
accurately and reliably simulate hierarchies of interacting multiscale physical processes 
that span a wide range of time and length scales, thus quickly reaching the limits of 
contemporary high performance computing at the tera and petascale. Exascale 
supercomputers promise to lift this limitation, and within ComPat, multiscale 
computing algorithms have been developed that are capable of producing high-fidelity 
scientific results and are scalable to exascale computing systems. 
 
The ComPat approach was based on generic multiscale computing patterns that allow 
implementation of customised algorithms to optimise load balancing, data handling, 
fault tolerance and energy consumption under generic exascale application scenarios.  
 
ComPat’s ambition is to establish new standards for multiscale computing at exascale, 
and provision a robust and reliable software technology stack that empowers 
multiscale modellers to transform computer simulations into predictive science. 
 
Several of CompBioMed’s Core Partners are also ComPat members and are actively 
involved in the methodologies required to tightly couple different biomedical 
simulations of differing time/length scales. 

 VECMA 
VECMA, or Verified Exascale Computing for Multiscale Applications, is a FET HPC 
project, where the purpose of the VECMA project (https://www.vecma.eu) is to enable 
a diverse set of multiscale, multiphysics applications — from fusion and advanced 
materials through climate and migration, to drug discovery and the sharp end of 
clinical decision making in personalised medicine — to run on current multi-petascale 
computers and emerging exascale environments with high fidelity such that their 
output is “actionable”. That is, the calculations and simulations are certifiable as 
validated (V), verified (V) and equipped with uncertainty quantification (UQ) by tight 
error bars such that they may be relied upon for making important decisions in all the 
domains of concern. The central deliverable will be an open source toolkit for 
multiscale VVUQ based on generic multiscale VV and UQ primitives, to be released in 
stages over the lifetime of this project, fully tested and evaluated in emerging exascale 
environments, actively promoted over the lifetime of this project, and made widely 
available in European HPC centres. 
 
CompBioMed will follow the VECMA project closely, and will employ the VVUQ toolkit 
where applicable. 
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9 Progress on Improving the Efficiency of CompBioMed Applications 
 
Several CompBioMed applications undergo almost continuous performance 
monitoring and improvement, such as Alya, HemeLB, HemoCell, Palabos, and BAC. 

 Alya 
 
Perform Cardiac Computational Mechanics simulations, from tissue to organ level. 
FEM-based electro-mechanical coupling solver, specifically designed for the efficient 
use of supercomputing resources. The contact is mariano.vazquez@bsc.es.  
Provider: BSC 
Current users: 40 internal and 40 external users 
Access mode:   Direct 
URL: https://www.bsc.es/research-and-development/software-and-

apps/software-list/alya  
Use scenario:   Non-clinical research; Clinical research; Clinical decision support; 

Design & optimisation for medical devices; In silico clinical trial. 
HPC Systems: MareNostrum, ARCHER, Cartesius 
HPC motivation:  Solve unreducible model; Multiscale model; Strongly coupled 

multiphysics model. 

 HemeLB 
This code simulates the blood flow through a stent (or other flow diverting device) 
inserted in a patient’s brain. The aim is to discover how different stent designs (surface 
patterns) affect the stress the blood applies to the blood vessel, in particular in the 
region of the aneurysm being treated. The pipeline also allows the motion of 
magnetically steered particles, for example coated with drugs, to be simulated and 
estimates made as to where they might statistically end up. More technically, the 
pipeline takes as input an STL file of the surface geometry of the patient, generally 
obtained via segmentation of DICOM images from a CT-scan. Also required is the 
(peak) velocity-time profile of fluid flow at each of the inlets to the simulated region. If 
inserting a stent, the start and end points of the stent in the vessel must be specified, 
as well as an image file containing a black and white representation of the surface 
pattern (black signifying ‘solid’). The HemeLB setup tool voxelises the geometry 
bounded by the input STL at the given resolution, and HemeLB (lattice-Boltzmann CFD 
solver) then simulates the fluid flow within that geometry, using the given velocity-
time profiles for each inlet. Once complete, the simulation output is analysed using the 
hemeXtract utility, which can produce images of cross-sectional flow, or 3D shots of 
wall shear stress distribution in the geometry using ParaView visualisation software. 
The contact is robin.richardson@ucl.ac.uk.  
Provider: UCL 
Current users: 40 users (mostly academia) 
Access mode:   Direct 
URL: https://github.com/UCL/hemelb  
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Use scenario:   Open Source software used primarily in academia. Clinical research; 
Clinical decision support; In silico clinical trial. 

HPC Systems: EPCC ARCHER, LRZ SuperMUC, PSNC Prometheus 
HPC motivation:  Solve unreducible model. 

 HemoCell 
High-performance library to simulate the transport properties of dense cellular 
suspensions, such as blood. It contains validated material model for red blood cells and 
additional support for further cell types (white blood cells, platelets). The blood plasma 
is represented as a continuous fluid simulated with an open-source LBM solver. The 
cells are represented as DEM membranes coupled to the plasma flow through a tested 
in-house immersed-boundary implementation. HemoCell is computationally capable of 
handling a large domain size with high number of cells ( > 10^4-10^6 cells). The contact 
is g.zavodszky@uva.nl.  
Provider: UvA 
Current users: NTU, BME 
Access mode:   Source 
URL: http://www.hemocell.eu  
Use scenario:   Clinical research, Clinical decision support, In silico clinical trial. 
HPC Systems: Cartesius, Lisa, SuperMUC 
HPC motivation:  Solve unreducible model; Multiscale model; Strongly coupled 

model. 
 

 Palabos 
Palabos is a software library for the computation of complex flows with the lattice 
Boltzmann method. It is highly parallel and versatile, and used in many areas of 
industry. For computational biomedicine, it offers front-end applications: A simulation 
program for the effect of deployed stents in an artery, and a simulation program for 
efficiency improvement of cement injection in vertebroplasty. 
Provider: UniGe 
Current users: 200 known users from academia and industry 
Access mode:   Direct 
URL: https://www.palabos.org  
Use scenario:   Clinical research; Clinical decision support; In silico clinical trial. 
HPC Systems: UniGe Baobab. 
HPC motivation:  Solve unreducible model. 
 
 

 BAC 
Workflow tool that runs and analyses simulations designed to assess how well drugs 
bind to their target proteins and the impact of changes to those proteins. A collection 
of scripts which wrap around common molecular dynamics codes to facilitate free 
energy calculations. Use of ensemble simulations to produce robust, accurate and 
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precise free energy computations from both alchemical and end-point analysis 
methodologies. The contact is dave.wright@ucl.ac.uk.  
Provider: UCL 
Current users: UCL, GSK 
Access mode:   Service 
URL: No current website - DNA Nexus app available only to UCL/GSK at 

present 
Use scenario:   Non-clinical research; Drug discovery; Design & optimisation. 
HPC Systems: DNAnexus 
HPC motivation:  Solve unreducible model; performs uncertainty quantification. 
 
 
The remainder of this Section describes progress achieved on these applications on 
both CompBioMed Core Partner HPC systems, and on HPC systems outwith 
CompBioMed. 

9.2 Scalasca Experience: POP collaboration 
Scalasca is a performance toolset boasting a scalable design and effectiveness that 
allows it to be used for the analysis of parallel application execution behaviour on 
massively parallel architectures with many thousands of processors. It supports 
measurement and analysis of highly-scalable HPC applications, such as HemeLB, which 
run on hundreds of thousands of ranks; Scalasca has been shown to scale (with 
HemeLB) from 3,744 to 239,615 MPI ranks (288 to 18,432 XE compute nodes of Blue 
Waters), with minimal computational overhead. CompBioMed developers have 
worked closely with the Performance Optimisation and Productivity (POP) Centre of 
Excellence based at the Jülich Supercomputing Centre, where Scalasca is developed, to 
optimise the initialisation phase of HemeLB. 
 
Our basic analysis workflow when using Scalasca begins with instrumentation of the 
HemeLB binary. When running the instrumented code, we choose to generate a 
summary report with aggregate performance metrics for individual function call paths 
(but may also select to include event traces recording individual runtime events). Our 
use of Scalasca, when applied to HemeLB, has been limited to the production of 
summary reports, which provide hardware counter-based performance metrics and a 
general overview of performance behaviour. With these reports members of POP CoE 
prepare complementary performance audits (HemeLB has been profiled to 99,600 
ranks on ARCHER, and to 239,615 ranks on Blue Waters, i.e. 81% of the available XE 
compute nodes). We have yet to perform finer-grained profiling using tracing, which 
instructs each process to generate a trace file containing records for its process-local 
events. Future work will involve the instrumentation of more classes/methods and 
tracing (providing time-line visualisation) for an in-depth analysis of HemeLB's 
simulation phase (which uses a sophisticated non-blocking communication pattern 
known as 'coalesced communication' that can only be effectively monitored using 
profiling tools). 
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Observations have led to significant reductions in HemeLB's memory utilisation. With 
metrics obtained from Scalasca, we were able to identify large data structures that 
were limiting HemeLB's application to larger problems. HemeLB is now capable of 
loading, decomposing, and simulating problems consisting of ~11 billion lattice sites 
(with approximately 50% peak memory usage on Blue Waters). Blue Waters has 22,640 
XE nodes, or a possible 362,240 MPI ranks. Decomposing a problem of ~11 billion sites 
over the entire machine will result in approximately 30,000 sites/rank - the already 
excellent strong scaling of HemeLB to 256,000 ranks (demonstrated without Scalasca 
and using a problem dataset of approximately 5 billion sites) may theoretically be 
extended to the 362,240 ranks. 

9.3 HemoCell at Bull Atos 
As part of CompBioMed’s Task 2.6, two of CompBioMed’s Core Partners, namely Bull 
in France, and the University of Amsterdam, in The Netherlands, have been working on 
the HemoCell application. The goal is to port, profile, optimise and report on the 
performance results of a set of applications provided by the CompBioMed community. 
HemoCell has been profiled and tested on several compute nodes (Skylake, Haswell, 
Broadwell). They also have access to AMD and Intel Xeon Phi compute nodes.  
 
In general, part of Bull’s goal is to co-work with CompBioMed core partners on the 
selected HPC codes and report on the implementations of CompBioMed applications 
on emerging HPC architectures and porting to new and maturing architectures. The 
first step is to port the applications on Bull HPC platform, run scalability tests, then 
perform a profiling of the applications to target the most time-consuming function and 
loops for optimisations. Finally, the deliverable consists of this report and suggestions 
for improving the performances of the applications.  
 
HemoCell is developed by the University of Amsterdam (UvA) and is a high-
performance code which simulates the transport properties of dense cellular 
suspensions such as blood (Figure 1) below. The blood plasma is modelled by a 
continuous fluid simulated with an open-source Lattice Boltzmann Method (LBM) 
solver. On the other hand, the cells are modelled by discrete element method 
membranes. Both models are coupled using an immersed boundary implementation. 
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Figure 1 Dense flow (left) and white blood cell extension (right) 
 
Starting from the portable implementation of HemoCell v1.4, the team members of 
Task 2.6 took the application and performed scaling test and optimisations on the Intel 
Skylake compute nodes.  
 
The profiling of the application led to targeting the hotspots of the application, where 
the optimisations need to be directed.  
 
In addition to the optimisation suggestions of the application, this report aims at 
determining the best practices for the implementation of numerical methods on 
emerging HPC architectures. 
 
The main outcome resides in the fact that the HemoCell code consists in an MPI 
implementation of the Lattice Boltzmann Method of Palabos and intensive I/O through 
the HDF5 library. The HPC code suffers from a lack of a load balancing method which 
causes the application to perform poorly. Fortunately, the upcoming version of 
HemoCell shall include a load balancing technique (Parmetis library). It was noticed 
that the Palabos library could not fully benefit from the vectorisation possibilities of 
the compiler and the processor architecture despite many intrusive and non-intrusive 
optimisations.  
 
As a conclusion, a better memory management or data structure can lead to a higher 
vectorisation. One may suggest an LBM implementation as well which may benefit 
from an OpenMP parallelisation. The latter shall take advantage from future multi-
threaded architectures. 
 
The full report can be found in the Appendix. 
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9.4 Improving the BAC and HemeLB: ComPat Collaboration 
This Section outlines the performance studies performed by CompBioMed partners 
under the ComPat programme. The full ComPat report can be found in the Appendix. 
 
The CompBioMed Core Partner UCL considered both HemeLB and the BAC with a view 
to scaling associated simulations on exascale platforms. Various performance metrics 
were considered, as may be most appropriate for the given application e.g. wall clock 
time, file sizes, scalability (strong and weak), and energy consumption (where 
available). In one weak-scaling application we also consider scalability of the 
middleware itself. 
 
To further explore and assess the potential impact of extreme parallelism, we also 
carried out performance studies on two applications using even larger 
supercomputers. To simplify the assessment, we note that the multiscale applications 
can be abstracted as sections of replica computing steps, and large monolithic 
applications. For this reason, our predictions as pertain to exascale resource usage 
largely come from detailed studies of application performance for a Replica-based 
exemplar (the Binding Affinity Calculator, or BAC) and for an exemplar containing a 
large monolithic application (HemeLB). 
 
Furthermore, a detailed mathematical model was developed to predict the time and 
length scales attainable by a lattice-Boltzmann solver (such as Palabos or HemeLB) in a 
fixed time on computers with e.g. 1 billion cores (exascale). 
 
With respect to the exascale, a major conclusion of this work was that, even for those 
applications exhibiting excellent strong scaling characteristics, the trade-off between 
resolving time or physical length scales in the system will frequently render such 
simulations inefficient on enormous core counts when compared to the weak scaling 
(replica) case. We therefore expect that the actual impact of exascale resources on 
future science applications will be to encourage the use of uncertainty quantification 
(techniques that often require multiple runs) in a field where researchers too often 
only run large simulations once. 
 
The full report can be found in Appendix B. 

10 General Guidance to Improve the Efficiency of Simulations. 
This section introduces an overview of how to improve the efficiency of simulations on 
generic HPC systems, both current and future exascale platforms. Moreover, this 
Section focuses on preparing your simulations for Exascale; however, this guidance 
holds for getting the best performance out of today’s current HPC systems as well. 

10.1 Exascale machines 
HPC platforms have seen their performances increase over the past years and are 
reaching a plateau. At the core level, the frequency, i.e. processor speed, together with 
the cache, has increased from 1.1GHz to 3.2 GHz and has almost reached an upper 
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bound. At the same time, CPUs are now able to execute several instructions per cycle, 
introducing thus a first level of parallelism. At the node level, the memory bandwidth 
continued to grow hand in hand with the processor speed, to keep the processor busy. 
A race over the miniaturisation of processor is leading towards more populated chips 
but with several constrains: technology for miniaturisation and heat dissipation.  
 
One other important key point is that for many high-performance applications, I/O 
performance is a blocking factor. I/O controls the amount of data that can be saved on 
disk and enables checkpoint files that can be written to prevent system failure which 
will become more crucial as HPC platforms continue growing in size and complexity. 
Therefore, I/O performances is already identified as key due to their significant impact 
on data intensive applications. 
 
The first special-purpose exascale machines are likely to be for a small set of 
applications, where the platforms themselves are built via co-design principles. The 
issue of adopting co-design strategies is an extremely important one when it comes to 
the transition to exascale high-performance computing. It is based on developing 
partnerships with computer vendors and application scientists and engaging them in a 
highly collaborative and iterative design process well before a given system is available 
for commercial use. The process is built around identifying leading edge, high-impact 
scientific applications and providing concrete optimisation targets. CompBioMed 
actively promotes HemeLB as a target application program, since it is one of very few 
applications that currently utilises multi-petaflop computing platforms to answer key 
scientific questions, and is actively being optimised for the emerging exascale. 
Specifically, it is hoped that HemeLB is part of the co-design process for the future 
Aurora platform at the Argonne Leadership Computing Facility, in the US, where 
Aurora is likely to be a pure Intel machine with their own specially developed 
accelerator technology. 
 
The first generic exascale machines are likely to be tightly coupled heterogeneous 
clusters of many-core/multi-core SMPs, and smaller clusters of accelerators, such as 
GPUs, FPGAs, etc. It is our understanding that the first exascale machine that 
CompBioMed partners will get access will be Aurora at Argonne Leadership Computing 
Facility. This is planned to be a pure Intel machine, with their own specially developed 
accelerator technology, built from co-design. 

10.2 How to Exploit Current and Future HPC Machines Efficiently 
Four key areas can be pointed out which must be invested to prepare software for 
exascale platforms, namely performance profiling, deployment of new programming 
models, development of new libraries and application co-design.  
 
Profiling, using the tools available today on HPC platforms (see above), enables users 
to locate performance bottlenecks and produces efficiency metrics in terms of both 
FLOPS and power consumption. 
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Programming models are key to exploiting future exascale platforms. For instance, the 
most common programming paradigms, namely MPI and OpenMP, have had their 
standards extended to prepare for exascale. Moreover, fewer common paradigms are 
becoming more popular, such as Global Address Space (PGAS) Languages, e.g., UPC, 
Co-Array Fortran, and GASPI, will aid programmers when seeking to exploit future 
hardware. Given the heterogeneous nature of future exascale systems, which will 
likely include GPUs and other accelerators such as FPGAs, their associated 
programming models, e.g., CUDA, OpenACC, OpenMP-4.0 directives (planned), and 
Hybrid programming, e.g., MPI+X, and OmpSs, are all becoming increasingly important. 
 
Employing efficient libraries can typically save the programmer from “reinventing the 
wheel”, given that the libraries are often tuned for the target platform, and yet the 
programmer’s code stack can remain portable. 
 
Lastly, co-design is where HPC vendors and end users can design the future HPC 
systems together, thus avoiding HPC systems that grab the headlines with powerful 
performance figures but are impractical for massive scale scientific computation. 
 
Application codes rarely perform and scale well when first parallelised: each doubling 
of scale typically exposes a new issue. Ensuring your application will scale on HPC 
systems - both today and on the exascale systems of the future - requires stepwise 
increasing of scale and validation of correctness, debugging, performance analysis and 
tuning. Then, the same process is repeated for each significant code extension or 
optimisation. 
 
According to VECMA, there exist three routes to exascale. They are (1) parallelising 
single scale models: enabling the use of more cores and reducing execution time; (2) 
construct multi-scale models: enabling the use of even more cores, more coupling, and 
more simulations incorporated; and finally (3) adding VVUQ (see above): enabling even 
more cores, more robustness, reproducibility and reliability. 
 
In the Appendix, we present A Rough Guide to Preparing Software for Exascale. This is 
essentially a Crib Sheet where programmers can consult when preparing their code for 
future exascale machines. Moreover, this Crib Sheet can also be of use when looking to 
make applications more efficient on not only future Exascale machines, but also the 
HPC systems available today. 

11 Conclusions and Future Work 
This deliverable has described the tools, such as debuggers, profilers and workflow 
managers, that have been deployed on CompBioMed’s HPC ecosystem that enable 
programmers to ensure their simulations make efficient use of the resources.  
 
Further, we have presented how our work, in collaboration with other CoEs and H2020 
programmes, have seen the improvement of four of CompBioMed’s largest 
applications, namely Alya, HemeLB, HemoCell, and BAC. 
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Lastly, and as added value, we presented some general guidance and a programmer’s 
crib sheet, on how to prepare applications for future exascale systems. 
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12 Appendix A: A Rough Guide to Preparing Software for Exascale 
This Section is to be used as a Crib Sheet for improving the efficiency of software. 
 
The term Exascale is used to describe HPC hardware capable of at least one exaFLOPS, 
or 10^18 FLoating point OPeration per Second. It is envisioned that such machines will 
have many multi-core processors, and that the available memory per core will be far 
inferior to those on current HPC platforms. This can be seen when attempting to port 
MPI codes to IBM Blue Gene machines, or the Intel Xeon Phi family, where the amount 
of memory per core is prohibitively small for many codes parallelised using MPI only. 
As such, the common practice of running one MPI task per physical core may no longer 
be possible for the majority of codes in the future.  
 
The solution for getting codes ready for exascale platforms requires both software and 
hardware related strategies. The former, the subject of this note, is described below. 
The latter, beyond the scope of this note, is achieved via Co-Design, where hardware 
vendors and end users work together to ensure future platforms are not built to 
achieve exascale performance at the expense of usability. 
 
Application codes rarely perform and scale well when first parallelised: each doubling 
of scale typically exposes a new issue. Ensuring the application will scale on HPC 
systems - both today and in on the exascale systems of the future - requires stepwise 
increasing of scale and validation of correctness, debugging, performance analysis and 
tuning. Then, repeat for each significant code extension/optimisation. 
 
Through performance analysis, programmers can locate so-called “hot spots”, i.e. code 
which takes the most time, as this code should then be targeted for improvement. 

12.1 Software preparations 
Given the memory per core will most likely be substantially reduced when compared 
to today’s HPC platforms, the practice of assigning one MPI task per physical core will 
have to be substituted by using every 2nd or 4th core for each MPI task. This is known as 
under-populating nodes. At first glance, this appears to suggest that we cannot fully 
exploit the hardware, as we simply avoid using 50% or even 75% of the cores; 
however, these spare cores can be employed via mix-mode codes, where each MPI 
task runs threaded routines/loops to run on the remaining cores. 
 
Essentially, authors must expose as many levels of parallelism as possible within their 
code. Coding this can involve ensemble runs to coupling multiscale codes, 
multiprocessing (with interprocess communication) to multithreading, vector 
processing to accelerator-specific commands. This process can slow the code down on 
present day platforms but will future-proof the code.  
 
For instance, there are sets of serial algorithms, so-called Optimal Serial Algorithms, 
which are often difficult or simply impossible to parallelise, as these algorithms employ 
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data from the previous steps or even the current step to make improvements at the 
current step. Such dependencies can prevent concurrent execution of threads in the 
program, for instance. 
 
The inelegant yet empowering solution is to replace the optimal serial algorithm with a 
sub-optimal serial algorithm which is, however, parallelisable. Whilst the serial 
performance may be worse, the parallel performance will soon outperform the serial 
version as the number of cores increases. 

12.2 Improve serial code 
Before considering how the code is parallelised, the first step is to consider the serial 
sections of the code. 
 

• Remove excess memory use in serial code. 
• When using C++, find good balance of OOP and functional programming, as an 

intensive use of OOP might introduce an unnecessary layer of complexity of the 
scientific code. 

• Ensure proper use standard libraries 

12.3 Introduce vector processing 

• Use appropriate compiler options 
• Write ordered loops or leave this to compilers? 
• Innermost loop must have independent iterations 
• Loop length is either larger of multiple of vector length 
• It is possible to set this at compiler time but not "probe and populate" 
• No function calls, except maths libraries 

o functions can be vectorised using OpenMP “declare simd” feature 
• No complex control flow 
• Determinable trip count (i.e. no while) 

o  the trip count must be known before entering the function at runtime 
• Data access should be vector aligned, i.e. start at vector boundaries, and 

preferably continuous 
• http://www.archer.ac.uk/training/course-material/2017/11/sgl-node-ox/L04-

vectorisation.pdf 
• Be aware of the ISA (SSE, AVX ..) 

o it determines the vector length 
o may target vectorised FMA instructions 
o Do loop padding manually to get rid of peel/remainder loops 
o Concerning vectorisation, we check compiler output or asm code to see 

what was vectorised 
o Use inline hints for functions or routines to help out the compiler to 

inline 
o Remember that YOU know your application better than the compiler 

does. 
o It all depends on how the data is aligned in RAM  
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• Hints with pragmas might be useful, also 
• Force data alignment with compiler instructions (usually done automatically by 

the compiler) 

12.4 Improve MPI code 

• MPI messages should be grouped to avoid multiple smaller messages 
o e.g. use derived data types to avoid double buffering 

• Avoid any storage or computation of O(nranks) 
• Avoid all-to-all communication 

o e.g. if(rank==0)then do work over all other ranks 
• Remove unnecessary MPI_BARRIERs 
• Do not over schedule cores when using threaded maths libraries 

o typically control using OMP_NUM_THREADS even when libs do not use 
OpenMP 

• Use nonblocking collective communications. 
o overlap computation and communications where possible 

• Remove unnecessary communication synchronisation 
o use MPI_TEST rather than MPI_WAIT 
o avoid MPI_Probe 

§ it most likely forces internal buffering to report the size of the 
pending message 

o Avoid ordered halo swapping,  
§ e.g. don't delay y-direction sends until x-direction receives have 

completed. 
§ however, huge network bursts are also not ideal  

• sometimes, ordered sends allow ordered receives. 
• and ordered sends might allow to take advantage of the 

network topology 
o e.g. one can completely load the network with x-

direction halo swaps and so on 
• Ensure load is balanced 

o Avoided the receive-before-send scenario 
§ one-sided communications can alleviate this 

• Be aware that not all MPI libraries are equal 
o e.g., there are many ways to implement collective communications. 

• Respect the fact that the MPI standard prohibits concurrent read accesses on 
the same buffer (even though there is no race condition)  

o It may reduce the efficiency (or cause bugs) 
• Tag the source 
• Be aware: “blocking” has an alternative meaning in the MPI standard.  

• This can easily lead to serialisation of huge chunks of the program. 
• Interleave/overlap communication with computation where possible 
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12.5 Improve MPI parallelism 

• Give each MPI task multiple sub-domains 
o a subdomain is a distinct region of the computational domain and a 

result of the domain decomposition algorithm. 
o this allows light weight parallelism on a socket, keeps cache logically 

together, etc. 
• Enable multiple tiles per task.  

o this might make tiles fit into cache but will spend time swapping 
boundary information with yourself 

• Use MPI Communicators, to map the communication to the target HPC 
topology 

o Collective operations are possible on a subset of processes. 
o Explicit communicators are very useful to leverage MPI Shared Memory 

• One-sided communication (or Remote Memory Access (RMA)), can be faster 
than the message passing model  

o May be beneficial when the load is hard to balance, since delays in the 
receiving process are not necessarily propagating to the sender 

12.6 Introduce OpenMP for threads on cores and OpenACC for GPUs. 
A code which uses both MPI and OpenMP, or a code that uses both MPI and OpenACC, 
is referred to as a mixed-mode code. This is done for two reasons: reduce memory 
footprint or/and speed up application. 
 
Not all MPI codes benefit from becoming mixed-mode codes. The benefits are as 
follows. 

• Hybrid applications have a reduced memory footprint (the shared memory 
model allows threads to avoid halo regions or ghost cells) 

• Eases load balance issue (usually the complexity of (adaptive) load balance 
growths with the number of subdomains) 

• Load balancing in threads is much easier 
o thread-pool model, or  
o tasks  

• For applications which are MPI-bound due to load imbalance (long barriers in 
MPI_Wait or MPI_Receive/Send), it might be advisable to reduce the number 
of processes and increase the threads, while using OpenMP’s built in load 
balancing features 

 
Whilst the drawbacks are as follows: 

• In case of MPI_THREAD_MULTIPLE, the application might lose portability 
o forked threads are allowed to call any MPI routines 

• Shared memory applications have their own problems 
o e.g. false sharing, where a cache line is voided repeatedly 

§ this is naturally avoided by MPI processes 
• NUMA effects, e.g. where the data is placed in memory 

o this can be resolved by careful task mapping. 
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 Maybe also better to use OpenMP 4.5 target directives than OpenACC. 

12.7 Improve OpenMP parallelism 
An excellent Best Practice Guide for writing mixed-mode programs, i.e. MPI+OpenMP, 
can be found via the Intertwine project pages: https://www.intertwine-
project.eu/mpi-plus-openmp-threads-resource-pack 
 

• Investigate OpenMP tasks 
• Try different schedules and/or tasks 
• Avoid over-scheduling threads when calling threaded maths libraries. 
• Minimise sequential code 
• Replicating computation rarely works 
• Ensure load balance over threads. 

o Use different loop schedules or tasks 
o May includes balancing communication in one thread with calculations 

in the rest 
• Avoid MPI data types as packing data is done on one thread: better to pack 

data in parallel using threads, as MPI should not need to double pack when 
data is contiguous 

• Take care with NUMA effects my considering mapping, i.e. task placement 
o e.g. run at least one MPI process per NUMA node 

• Take care with process and thread binding: threads should run on the same 
socket as their parent MPI process. 

• Minimise the number of OpenMP barriers 
• Use OpenMP directives to force SIMD operations 

o OpenMP allows explicit vectorisation of functions called from vectorised 
loops 

12.8 General programming tips 

• Be aware of the Load-Hit-Store problem (it does exist on multiple levels) 
o prevents caching by the compiler and causes pipeline stalls. 
o e.g., appears in MPI-IO (sometimes referred to as Read-Modify-Write 

effect) 
• IO can dominate 

o consider MPI-IO or, better still, HDF5 

12.9 Code Longevity 
Whilst this section includes good practice for software engineers in general, the 
following points are key when preparing for exascale systems, primarily because large 
popular codes outlive the programmers who, in turn, typically outlive the HPC 
platforms for which the software was written. 
 

• follow a strict coding style guide 
• use readable variables 
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• use internal documentation 
• keep routines to less than one page 
• copyright statements for every module/subroutine/function 

o key for IP monitoring 
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13 Appendix B: Bull/Atos report on Task2.6 Work Done 

13.1 Bull  
 
Bull is part of the Atos group. As Europe’s only computer manufacturer through its Bull 
brand, Atos operates in the ultra-high processing power market, to liberate its 
customers’ ambitions. The CEPP (Centre for Excellence in Parallel Programming), a 
branch of Bull, aims at hosting collaboration and Partnership. Most of the experts in 
this centre have a PhD in a scientific domain; the others a PhD in Computer Science. 
This choice is driven by the wish to create a bridge between scientists and 
performance experts. 
 
The key advantage is that, scientists of the same domain will immediately and deeply 
understand each other. The quality of the exchanges will always be higher than the 
one we may achieve with pure computing experts.  
 
Obviously, the core of expertise of the whole team is optimisation, porting, and 
knowledge about the platform and their evolution. Based on this core expertise, a lot 
of high level services can be derived. 
 

13.2 Background  
 
Computational methods, based on human biology, are now reaching maturity in the 
biomedical domain, rendering predictive models of health and disease increasingly 
relevant to clinical practice by providing a personalised aspect to treatment. Computer 
based modelling and simulation are well established in the physical sciences and 
engineering, where the use of high performance computing (HPC) is now routine. 
 
CompBioMed is a European Commission H2020 funded Centre of Excellence (CoE) 
focused on the use and development of computational methods for biomedical 
applications. Users within academia, industry and clinical environments are working to 
train more people in the use of these tools and methods in this domain. 
 
The objectives of CompBioMed are met by a cyclic collaboration of individual work 
package (WP) teams: WP1 focuses on the project management, WP2 consists in 
research activities, WP3 and WP4 relates to networking activities and finally WP5 and 
WP6 handle service activities.  
 
In this report, the work performed by WP2 on “developing plans for and implementing 
the upscaling of CompBioMed production application for future HPC platforms, 
including those heading toward the Exascale (Task 2.6)”, are presented. The goal is to 
port, profile, optimise and report on the performance results of a set of applications 
provided by the CompBioMed community.  
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List of core partners of CompBioMed: University college London (UCL), University of Amsterdam (UVA), 
University of Edinburgh, SURFsara, Barcelona Supercomputing Centre (BSC), University of Oxford, 
University of Geneva, University of Sheffield, CBK Sci Con Ltd, Universtat Pompeu Fabra, LifeTec Group, 
Acellera, Evotec, Bull, Janssen.  
 
List of associate partners of CompBioMed: Avicenna Alliance, Birmingham City University, Bruel 
University London, GSK, LRZ, Rutgers, DNAnexus, London Science Museum, University of Leeds, VHP 
Institute, Zayed University, HITS, Hartree Centre, University of Southampton, KINDI, University Catolica 
de Murcia, Aix Marseille University, e-Cardiology, Oxford NHR, Alcesflight, Cyfronet, Electric Ant Lab BV, 
Norton Straw, ITMO University, Pozlab, Qatar Rototic Surgery Centre, Microsoft, Dassault Systemes, 
Lightox, InSilicoTrials, Diamond Light Source, EnsembleMD, ANSYS, Medtronic, Université Libre de 
Bruxelles, PIE Medical Imaging, Astra Zeneca.  
 

13.3 Objectives of this deliverable 
 
The aim of this document is to report on the activities performed on WP2 Task 2.6. The 
goal is to co-work with CompBioMed core partners on the selected HPC codes and 
report on the implementations of CompBioMed applications on emerging HPC 
architectures and porting to new and maturing architectures. The first step is to port 
the applications on Bull HPC platform, run scalability tests, then perform a profiling of 
the applications to target the most time-consuming function and loops for 
optimisations. Finally, the deliverable consists of this report and suggestions for 
improving the performances of the applications.  

13.4 Work performed in this deliverable 
 
The work performed in this deliverable consisted of Task 2.6 in WP2 of the 
CompBioMed description of action. The latter includes the porting, profiling and 
optimisation of the selected HPC applications on emerging HPC platforms.  
 
Among the high-performance computing codes which lie at the heart of the 
CompBioMed CoE, the HemoCell code was chosen by Bull’s team to be investigated.  
 
HemoCell is developed by the University of Amsterdam (UVA) and is a high-
performance code which simulates the transport properties of dense cellular 
suspensions such as blood (Figure 2Error! Reference source not found.). The blood 
plasma is modelled by a continuous fluid simulated with an open-source Lattice 
Boltzmann Method (LBM) solver. On the other hand, the cells are modelled by discrete 
element method membranes. Both models are coupled using an immersed boundary 
implementation. 
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Figure 2 Dense flow (left) and white blood cell extension (right) 
 
Starting from the portable implementation of HemoCell v1.4, the team members of 
Task 2.6 took the application and performed scaling test and optimisations on the Intel 
Skylake compute nodes.  
 
The profiling of the application led to targeting the hotspots of the application, where 
the optimisations need to be directed.  
 
In addition to the optimisation suggestions of the application, this report aims at 
determining the best practices for the implementation of numerical methods on 
emerging HPC architectures.  

13.5 Organisation of this report 
 
In the following chapters, the main results of the work effort are summarised. A brief 
description the HPC platform which hosted the computations, is carried out together 
with the dependencies of the application HemoCell. The scalability, profiling results are 
then presented. The following chapter is dedicated to the optimisation effort. The last 
chapter consists of suggestions of alternatives to Palabos, the LBM library which lies at 
the heart of the HemoCell code.  
 

 Setup (hardware configuration and Simulation parameters) 
 
The HemoCell code (V1.4) was retrieved from the HemoCell webpage 
(www.hemocell.eu) and was setup from source. With respect to the compiling and 
running requirements, the following dependencies versions in Table 1 were used. 
 
Dependency Version 
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Intel C/C++ Compiler 18.0.5 
Intel MPI 2018 Update 1 
Cmake 3.10.0 
HDF5 1.10.2 
Palabos 2.0 
GNU Patch 2.7.1 
Table 1 HemoCell dependencies 
The HemoCell code was installed on Bull’s HPC medium scale platform. It is composed 
of several compute nodes of type Intel Skylake (16, 18 and 20 cores per socket and 2 
sockets per node) with EDR interconnect. Lustre and GPFS parallel filesystems are 
available (Table 2).  
 
Processor type (number) Intel Skylake (Xeon Gold 

6148) 
Intel Skylake (Xeon Gold 
6130) 

Number of cores per socket 20 16 
Number of threads per 
socket 

40 32 

Number of sockets per node 2 2 
Base frequency 2.4 GHz 2.1 GHz 
Cache  28 160 KB 22 528 KB 
Bus speed 192 GB DDR4 2667 MT/s 

DR 
192 GB DDR4 2667 MT/s 
DR 

Thermal Design Power (TDP) 105 W 125 W 
Instruction Set Extensions Intel SSE4.2, AVX, AVX2, 

AVX512 
Intel SSE4.2, AVX, AVX2, 
AVX512 

Number of AVX-512 FMA 
units 

2 2 

Table 2 Main characteristics of the Intel processor used for Task 2.6 
 
The HemoCell code provides a configuration file which sets up the parameters for the 
numerical simulation. One may find the description of the shape of the cells, 
<ibm> 
 <shape> 1 </shape> <!-- shape: Sphere:[0], RBC from sphere:[1], Cell(defined):[2], RBC from file [3] RBC 
from Octahedron [4] Sphere from Octahedron [5] --> 
 <radius> 3.91e-6 </radius> <!-- Radius of the particle in [m] (dx) [3.3e-6, 3.91e-6, XX and 4.284 for 
shapes [0,1,2,3] respectively --> 
 <stepMaterialEvery> 20 </stepMaterialEvery> <!-- Update particle material model after this many fluid 
time steps. --> 
 <stepParticleEvery> 5 </stepParticleEvery> <!-- Update particles position after this many fluid time 
steps. --> 
</ibm> 
 
And more details about the domain geometry and the number of cells of reference 
direction.  
 
<domain> 
 <geometry> tube.stl </geometry> 
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 <fluidEnvelope> 2 </fluidEnvelope> 
 <rhoP> 1025 </rhoP> <!--Density of the surrounding fluid, Physical units [kg/m^3]--> 
 <nuP> 1.1e-6 </nuP> <!-- Dynamic viscosity of blood plasma, physical units [m^2/s]--> 
 <dx> 5e-7 </dx> <!--Physical length of 1 Lattice Unit --> 
 <dt> 1e-7 </dt> <!-- Time step for the LBM system. A negative value will set Tau=1 and calc. the 
corresponding time-step. --> 
 <refDir> 1 </refDir> <!-- Used for resloution setting and Re calculation as well --> 
 <refDirN> 64 </refDirN> <!-- Number of numerical cell in the reference direction --> 
 <blockSize> -1 </blockSize> 
 <kBT>4.100531391e-21</kBT> <!-- in SI, m2 kg s-2 (or J) for T=300 --> 
 <Re> 10 </Re> <!--Reynolds number--> 
 <particleEnvelope> 25 </particleEnvelope> 
 <kRep> 2e-22 </kRep> <!-- Repulsion Constant --> 
 <RepCutoff> 0.7 </RepCutoff> <!-- RepulsionCutoff --> 
</domain> 

 Scalability Tests 
 
The scalability abilities of the HemoCell code are investigated in this chapter. First, the 
strong scalability is presented. The experiments were performed on Intel Skylake 
nodes (Intel Xeon 6130, see Table 2). 
 
 

 
Figure 3 HemoCell Strong scaling. Red line denotes the ideal scaling curve.  
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Figure 4 HemoCell strong scaling efficiency. The horizontal red line denotes the ideal cluster efficiency. 
 
The efficiency drops below 70% within one node which can be improved. This strongly 
suggests that the ratio compute per core is decreasing rapidly and the synchronisation 
time takes an important part in the execution time. In the following, experiments on 
the weak scalability are performed in the same settings.  
 

 
Figure 5 HemoCell weak scaling efficiency 
 
Figure 5 shows the overall weak scaling performance of the test case which was 
provided on demand by UVA. The test cases were generated by doubling the size of 
the computational domain and filling it with blood cells such that the density of blood 
cells remains constant. The efficiency is settling around 70% for 512 cores. 
 
To further understand where the scaling is dampened, the weak scaling of each 
function in the main computational loop is investigated in Figure 6.  
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Figure 6 HemoCell weak scaling efficiency of inner functions 
 
The LBM solver’s efficiency is dropping rapidly. To improve the weak scaling behaviour 
of the code, the collideAndStream function is either not used correctly (e.g. with badly 
balanced load) or needs be replaced by a more efficient, possibly single-instruction-
multiple-data (SIMD) accelerated function.  
 
Remark: The fact that a saturation of the efficiency at around 70% is observed, might 
suggest that we should not evaluate the scaling performance against the runtime with 
1 node. In other words, the code might not have been designed to be run at very low 
core counts, thus we should maybe move the base to the right (e.g. 16 cores = 100% 
efficiency)  
 
The weak scaling results are quite satisfying compared to the strong scaling results 
although weak scaling tends to work better as more workload tend to keep the 
processors busy.  
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 Profiling 

 MPI time analysis 

 
Figure 7 HemoCell application ratio – Intel profiling tool ITAC. 
 
Figure 7 represents the ratio of all MPI calls to the rest of the code in the application. 
This information is collected by Intel Trace Analyzer and Collector (ITAC) formerly 
known as Vampirtrace. This tool is developed for analysing MPI communication which 
includes the tracing and analysing of MPI functions calls and messages being 
transferred.  
 
Figure 7 shows that the total MPI time is quite large. More importantly, Figure 8 shows 
that half of this time is spent in MPI wait and MPI barrier which indicates 
synchronisation problems and wait at barriers for I/O calls. 
 
 

 
 
 
The list of the most active MPI functions from all MPI calls in the application are 
presented above in Figure 8.  
 

 
Figure 9 HemoCell late sender performance issue 
 
Figure 9 shows the late sender problem due to imbalance in the MPI workload. Unlike 
the late receiver problem which can be mitigated with non-blocking communications, 

Figure 8 HemoCell top MPI functions 
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the late sender issue can be mitigated by putting some effort in a better workload 
between MPI processes.  

  
Figure 10 HemoCell global MPI communication time 
 
 
 
Figure 10 shows the rank-to-rank communication matrix. This pattern underlines the 
unbalanced workload and specifically the all-to-all communication which becomes 
limiting when the number of cores is high enough. 
 

 
 

 
Figure 11 indicates the amount of MPI wait time versus the number of cells per rank at 
a fixed timestep which impacts the workload. MPI wait time is the highest for ranks 
with smallest number of cells e.g. workload. 
 

 Hotspot functions/loops 
A global analysis of the HemoCell application shows that it divides mainly in calls to the 
LBM solver called Palabos and I/O using the HDF5 library for storing intermediate 
snapshots at regular timesteps and checkpointing (see Figure 12). 

Figure 11 HemoCell MPI wait time vs workload at a fixed time step of the simulation 
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Figure 12 HemoCell profile chart 
 
 
At the compilation level, the flags “-O3 -xHost -qopt-zmm-usage=high” enables 
optimisations for code speed quite aggressively. The compiler performs some basic 
loop optimisations (transformations such as fusion, Block-Unroll-and-Jam and 
collapsing IF statements), inlining of intrinsic, intra-file interprocedural optimisation 
and most common compiler optimisation technologies. The “-xHost -qopt-zmm-
usage=high” allows to target the highest ISA, e.g. AVX-512, which enables vectorisation 
when possible.  
 
 

 
Figure 13 HemoCell Memory stalls and floating-Point Instruction usage – Intel Application 
Performance Snapshot 
Figure 13 shows that, despite the high capacity of the instruction set of the processor, 
the compiler could not retrieve a good vectorisation of the code leading to an almost 
fully scalar floating-point instruction. For instance, the loop at line 95 in the Palabos 
solver, interpolationCoefficientsPhi2() which is the a hotspot loop (see Figure 14), the 
compiler could not vectorise the loop due to multiple IF statements with an exit 
(Figure 15). Similarly, the loop at 543 in the blockLattice3D.hh, 
blockwisebulkCollideAndStream(), the compiler is unable as well to vectorise due to 
the impossibility to compute in advance the loop count (Figure 16).  
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Figure 14 HemoCell BottomUp hotspot loops – Intel VTune 

 
Figure 15 Palabos solver, interpolationCoefficientsPhi loop – Intel VTune 

 
Figure 16 Palabos solver, blockwiseBulkCollideAndStream loop -- Intel VTune 
 
 

13.6 Optimisation Tracks 
 

 Attempt to utilise full potential of x86 instruction set 
Early in the hotspot analysis, the compiler was only capable of vectorizing small chunks 
of the code. About 99% of the executable and with it the computationally extensive 
regions were composed out of serial instructions. As the computationally most 
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expensive region, the focus is set on the blockwiseBulkCollideAndStream() function in 
blockLattice3D.hh. 
 
It is responsible of advancing the fluid according to the Lattice Boltzmann Method. The 
rather complex nature of the 6 nested for loops made it necessary to traverse the call 
stack down to where the actual computations are performed. In the following, the 
subroutines addNaiveForce() and addGuoForce(), which are implemented in 
externalForceTemplateeD.h are investigated. 
 
Within these functions, the force with respect to each neighbouring cell is computed. 
The computations differ slightly, depending for instance on the distance of the centre 
points of the respective cells. To enable vectorisation or fused multiply-add (FMA) 
operations, we need to unify these computations and even more importantly, the data 
on the random-access memory (RAM) must be aligned. In principle, we archived this 
by introducing an additional buffer which stored precomputed results which had to 
computed individually and once this was done, vector operations were performed on 
the buffer. 
 
static T A[27] = {…} __attribute__((aligned(64))); 
static T B[27] = {…} __attribute__((aligned(64))); 
for(unsigned int i = 0; i < 9; ++i){ 
#ifdef _USE_BLAS 
 C[i] = blas_ddot(3, &(A[i*3]), 1, &(B[i*3]), 1); 
#else 
 C[i] = A[I*3] * B[i*3] + A[i*3 + 1] * B[i*3 +1] + A[i*3+2] * B[i*3+2] ; 
#endif 
} 
//some more computations to get to the final result for array f[] 
 
Throughout multiple test, the structure was altered to obtain more performance. For 
instance, instated of statically allocated buffers, a memory bool was used. Also, as 
shown in the sample code, BLAS level one routines were put in place.  
However, this technique did not lead to the desired decrease in execution time. 
Unfortunately, the way the 6 nested loops operate, results in rather short loops. Thus, 
the vector length is very limited. The benefits of using SIMD instructions were at best 
about even with the effort to prepare and align the data at each iteration. Additionally, 
the BLAS routines couldn’t show their full potential, due to the short vector length. 
Eventually, the idea to vectorise computations within a loop iteration had to be 
abandoned. 
 
However, one could argue vectorisation should be feasible across loop iterations, thus 
inlining all function calls and vectorizing the loop itself. 

13.7 Loop vectorisation 
 
To archive vectorisation, the function which were called within the loop were declared 
SIMD. 
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#pragma omp declare simd [list] 
Next, vectorisation is enforced on the loop, while disrespecting hits from the compiler 
whether it is efficient or not. The data access pattern can be found in the overloaded 
operator in  
${Palabos_src_dir}/core/implicitGrid3D.h . 
It depends on the 3 inner loop variables and is linearised as such: 
[z + nZ*(y + nY*x)]. 
Where x, y and z are the loop iteration counters of the three inner loops, respectively. 
nZ and nY are the array bounds in their respective dimensions. 
Note, that the operator (), which is decaled and defined in implicitGrid3D.h is 
shadowed by the definition given in  
${Palabos_src_dir}/atomicBlock/blockLattice3D.hh. 
The access pattern, however, remains unchanged. 
Compiler messages show, that the force calculation in the collision step was 
successfully inlined into the loop. 
 
Unfortunately, the way the data is structured in RAM is not allowing for an efficient 
vectorisation. Each cell has a size of 192 Bytes and they are consecutively placed in 
storage. Thus, from one loop iteration to the next, 192 Bytes must be traversed. This is 
too much to loaded efficiently into vector registers. During the compilation the 
compiler is giving the following output: 
remark #15415: vectorization support: non-unit strided load was generated for the variable <grid-
>parent->rawData->data[innerZ+?*(innerY+?*innerX)][4]>, stride is 24 [ 
/home_nfs_robin_ib/bkarlshoeferp/hemocell_perf_test/hemocell_vec/hemocell-
1.4/palabos/src/core/array.h(66,16) ] 
 
The stride being 24 is counted in elements of double precision. Consequently, there is: 
24 * sizeof(double) = 192 
 
During runtime, this jump is observed in Figure 17.  
 

 
Figure 17 Starting address for adjacent cells. The storage location is given in HEX, and the 
displacement is indeed 192 Bytes (e.g. the first two lines yield 0x7f6fd9d10968 – 0x7f6fd9d10a28 = 
0xC0 = 192). 
Thus, two corresponding force entries, e.g. Cell[0]->force[0] and Cell[1]->force[0], are 
192 Bytes apart (Figure 18). That this is too much for AVX512. Vectorisation which 
reaches across loops in the innermost loop nest is basically ruled out. 
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Essentially, there is an Array of Structs (AoS) where the Array is “rawData” and the 
Struct is “Cell<…>”. Thus, the stride becomes large and consequently vectorisation 
unbeneficial.  
 

 
Figure 18 Orange highlight: section, which is loaded into AVX register. 
 
A Struct of Arrays (SoA) would be better: 
 

 
Figure 19 Struct of Arrays, better memory localisation for AVX register 
 
The orange-highlighted section in Figure 19 represents the memory which is loaded 
into the vector registers at one point in the computation. Obviously, a SoA is superior 
to an AoS. 
 
Restructuring the data layout would be expensive. The Layout of a cell is descripted in: 
${Palabos_src_dir}/latticeBoltzmann/nearestNeighborLattices3D. 
The description is rather low level, essentially stating the offset from the beginning of 
the object to the requested variable.  
struct Force3dDescriptor { 
 static const int numScalars = 3; 
 static const int numSpecies = 1; 
 static const int forceBeginsAt = 0; 
 static const int sizeOfForce = 3; 
}; 
 
In practice, this looks like the following (externalForceTemplates3D.h): 
Array<T,Descriptor<T>::d> externalScalars = … ; 

ImplicitGrid<T,Descriptor> 
…. 
Parent.rawData 

192 Bytes 

force [ 0 ... 18 ] 

192 Bytes 

force [ 0 ...18 ] 

192 Bytes 

force [ 0 ... 18 ] 

Cell<T,Descriptor> 

Cell [ 0 ... n ]  Cell [ 0 ... n ]  
 

Cell [ 0 ... n ]  
 

force 0 force 1 force 2 
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T* force = (T*)externalScalars + forceBeginsAt; 
Modifying the actual address, where it is pointed to, makes it hard to track in which 
parts of the program might break if the code is modified from AoS to SoA access. 
Additionally, other functions might benefit from the fact that data is clustered by cell, 
not by orientation in space.  
 
So far, we haven’t even talked about data dependencies. Clearly, they pose an issue, as 
can be seen in the Figure 20. 
 

  
Figure 20: Location of cell with ID 210 in the density field at the same point in time in 2 identical runs. 
The value of the density is different. 
Also, slight differences can be observed while investigating the force vector field in 
Figure 21 and Figure 22. 
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Figure 21 Difference in the force field becomes evident between two identical runs 
However this might not be inherited by the forced vectorisation, as it is discussed in 
the next section. 
 

13.8 Reproducibility 
Another subject is reproducibility of results from simulations. Runs with identical input 
data do not lead to identical output files. The force vector field as well as the scalar 
field of density do vary potentially up to 10% as shown in Figure 22. 
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Figure 22 Difference in the force field becomes evident between two identical runs, once the values 
are displayed (left: [9.17e-4, -9.4e-5, 3.57e-4] and right: [1.0e-3, -2.35e-4, 3.96e-4]. 

13.9 Single Node Optimisation 
 
Upon realising that the code is parallelised with MPI only, the idea of implementing 
shared memory parallelism within Palabos was considered using OpenMP. The 6-times 
nested loop, which is mentioned above, was targeted, again. However, the granularity 
of a single task was too small within the 3 inner nests of the loop. The benefits of 
calculating the loop in parallel were outweighed by the overhead to fork the threads 
pool. Going to the outer levels of the loop, loop and data dependencies prevented to 
go further. 
 
Eventually, without refactoring the code of Palabos, light weight parallelism is not 
beneficial.  
 

13.10 Possible alternatives to Palabos 
 
As a major issue for the poor scalability of HemoCell, we had to investigate the Palabos 
library. Palabos manages the advancement in time via the Lattice Boltzmann Method 
and does the initial domain decomposition and voxelisation. 
 
As described above, the rather poor scaling performance of the HemoCell code on a 
compute cluster is due to the uneven spread of the workload amongst the MPI tasks 
(processes). So far, the load balancing appears to be static. Thus, it is not flexible over 
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time and does not react or depend on the actual amount of blood cells in one 
multiblock. 
 
We recognise the fact that HemoCell will soon incorporate ParMetis to do load 
balancing. However, it might be easier and more efficient to outsource the task to the 
LBM solver itself. Unfortunately, Palabos does not provide this feature. 
 
In addition to the lack of a load balancing routine, Palabos is relying mostly on MPMD 
programming (MPI) to do the parallelism. The lack of the shared memory programming 
model (e.g. OpenMP) lays even more weight on very accurate load balancing since 
imbalances can usually be handled more easily in one continuous block of memory.  
 
Lastly, during many compilations of Palabos, we did detect only a very small 
percentage of SIMD capable code. This makes us believe, the Palabos might not be the 
optimal choice, especially since exist other, highly optimised LBM solvers. In the 
following, we would like to suggest a very brief overview of possible alternatives to 
Palabos. 

 OpenLB  
OpenLB is, as the name suggests, open source and hybrid (MPI + OpenMP). The code 
has implemented its own load balancing routine. Moving from Palabos might be 
facilitated by the fact that it supports “.stl“ geometries. 

 WaLBerla 
Also, a hybrid code (OpenMP + MPI), which is written in C++. In contrast to Palabos it 
does support multiple LBM collision/streaming models. It has a strong remark on 
GPGPU usage, which suggests, that the code uses SIMD instructions. The domain 
decomposition is performed in parallel and the code is available (open source). It 
might be worth a look since it already ran on SuperMUC with 10^18 cells.  
 
 

13.11 Conclusion 
 
In this report, a detailed profiling and scalability runs of the HemoCell application have 
been presented in addition to a set of optimisation tracks and their corresponding 
results.  
 
The main outcome resides in the fact that the HemoCell code consists in an MPI 
implementation of the Lattice Boltzmann Method of Palabos and intensive I/O through 
the HDF5 library. The HPC code suffers from a lack of a load balancing method which 
causes the application to perform poorly. Fortunately, the upcoming version of 
HemoCell shall include a load balancing technique (Parmetis library). It was noticed 
that the Palabos library could not fully benefit from the vectorisation possibilities of 
the compiler and the processor architecture despite many intrusive and non-intrusive 
optimisations.  
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As a conclusion, a better memory management or data structure can lead to a higher 
vectorisation. One may suggest an LBM implementation as well which may benefit 
from an OpenMP parallelisation. The latter shall take advantage from future multi-
threaded architectures.  
 

 Meetings  
 
Date Topic People 
13 Sep 2018 HemoCell: run and 

optimisation repots 
V. Azizi, E. Raffin, O. 
Hamitou, P. Karlshofer 

26 Sep 2018 Large case study V. Azizi, O. Hamitou, P. 
Karlshofer 

8 Nov 2018 Discussion on final output V. Azizi, O. Hamitou, P. 
Karlshofer, E. Raffin 
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14 Appendix C: Report of UCL’s exascaling BAC and HemeLB. 
This Appendix is a copy of relevant Sections from the ComPat deliverable “D3.3: Report 
on performance measurements and prediction of HPMC Application”. This is a public 
document; however, at the time of writing, the report is currently unavailable. Thus, 
for the sake of completeness, the relevant sections are included here, namely Section 
2.1 and the relevant part of the general Conclusions. Finally, references have been 
inlined for clarity. 
 

Largest scale performance tests 
In this section, we detail the performance studies carried out on ComPat applications 
on the largest resources. These were typically tested on resources larger than that 
available under the Experimental Execution Environment. A weak scaling and a strong 
scaling application are considered, and some exascale predictions are formulated. 
 

Binding Affinity Calculator (replica-based representative) 
For multiscale applications following the replica computing pattern, it makes more 
sense to think in terms not of a single simulation, but rather of simulation campaigns. 
It is the orchestration of these campaigns that is key here, and therefore the choice 
and performance of the middleware is highly important, particularly as regards the 
efficient use of putative exascale resources. 
 
In the first year of this project, the BAC was on the fast track and, with the giant, full-
SuperMUC run, we demonstrated the feasibility of such enormous RC runs. In the 
second year, BAC was the application with which we developed and built the RC 
pattern, and we demonstrated that with RC we can aid in running BAC on non-trivial 
distributed environments. Finally, this year we want to demonstrate how BAC behaves 
on a single resource, with systematic studies of weak scaling. By adding up these three 
parts, we get the full picture whereby all ingredients are ready to go into production, 
using RC, the pilot jobs, and so on. 
 
Our selected multiscale application demonstrating replica computing is the High 
Throughput Binding Affinity Calculator (HTBAC), which builds upon the RADICAL 
Cybertools (a middleware component of the COMPAT stack), as the framework 
solution to support the coordination of the required scale of computations, allowing 
the exploitation of thousands of cores at a time. 
 
To determine the performance of HTBAC, particularly as regards the extension to 
extreme parallelism, a number of performance studies were carried out. The main 
resource used was NCSA Blue Waters, with additional runs on LRZ SuperMUC and 
ORNL Titan. 
 
 Scalability and resource usage 
We explored the performance of HTBAC on NCSA Blue Waters with two different 
protocols: 
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1. ESMACS (Enhanced sampling of molecular dynamics with approximation of 
continuum solvent), consisting of 25 replicas, i.e. 25 pipelines 

2. TIES (Thermodynamic integration with enhanced sampling) consisting of 13 
lambda windows and 5 replicas, i.e. 65 pipelines 

 
Both protocols run for a total of 6 ns simulation durations. ESMACS produces 3.5 
GB/system (24 MB/ns) while TIES produces 10 GB/system (24 MB/ns). Each simulation 
step in TIES and ESMACS requires 32 cores. Protocols run approximately 10-12 hours, 
depending on the physical system and the number of timesteps provided by the user. 
 
When considering an application following the replica computing (RC) pattern, the 
most pertinent performance property is that of weak scaling. This is also the most 
scientifically relevant property, as it demonstrates the ability of HTBAC to solve large 
number of drug candidates in essentially the same amount of time (as the resources 
increase). 
 
To this end, in our first study we investigated the weak scaling behaviour when 
screening sixteen drug candidates concurrently using thousands of multi-stage 
pipelines on more than 32,000 cores on NCSA Blue Waters (we observed similar scaling 
on other platforms such as ORNL Titan for different protocols). 
 

 
Fig. 1: Weak scaling properties of HTBAC. We investigate the weak scaling of HTBAC as 
the ratio of the number of protocol instances to resources is kept constant. Overheads 
of HTBAC framework (right), and RCT overhead (left) and total execution time TTX (left) 
for experimental configurations investigating the weak scaling of TIES. We ran two 
trials for each protocol instance configuration. Error bars in TTX in 2 and 8-protocol 
runs are insignificant. 
 
A detailed representation of the weak scaling performance of HTBAC for the TIES 
protocol is presented in Fig. 1, demonstrating almost perfect scaling to hundreds of 
concurrent multi-stage pipelines. 
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In our second set of studies [“Concurrent and Adaptive Extreme Scale Binding Free 
Energy Calculations” Dakka et al., 2018 (https://arxiv.org/abs/1801.01174)] we carried 
out a number of experiments on Blue Waters using both the ESMACS and TIES 
protocols. We present here the results of the weak scaling experiments: 

 
 
In Fig. 2 we show (a) the weak scaling of HTBAC with the TIES protocol, (b) with the 
ESMACS protocol, and (c) with instances of both TIES and ESMACS protocols. 

 
Fig. 2. Weak scaling of HTBAC. The ratio number of protocol instances to resources is 
constant. Task Execution Time with and HTBAC, EnTK+RP, aprun overheads with (a) 
TIES (Experiment 1), (b) ESMACS (Experiment 2), and (c) TIES and ESMACS (Experiment 
3). 
 
For all weak scaling experiments (1–3) we used physical systems from the BRD4-GSK 
library (16 ligands made available for this work by GlaxoSmithKline) with the same 
number of atoms and similar chemical properties. The uniformity of these physical 
systems ensures a consistent workload with insignificant variability when 
characterizing their performance under different conditions. 
 
In all weak scaling experiments (Fig. 1 and 2) we observed minimal variation in the task 
duration as the number of protocol instances increases. We conclude that HTBAC 
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shows near-ideal weak scaling behaviour under the conditions tested. The overhead 
for the TIES results includes the adaptive sampling algorithms. The HTBAC overhead 
depends mostly on the number of protocol instances that need to be generated for an 
application. This overhead shows a super linear increase as we grow the number of 
protocol instances, but the duration of the overhead is negligible when compared to 
Total Task Execution Time. 
 
This detailed performance data supplements and reinforces our earlier experiences of 
the excellent weak scaling of the BAC on large supercomputing platforms such as LRZ 
SuperMUC in 2016, in which both phases (a total of 250,000 cores) were used 
simultaneously for 37 hours, testing 50 candidate drugs and generating around 5 
terabytes of data1. 
 
 Node failure rate 
The probability of node failures is likely to increase as supercomputers are constructed 
with ever larger numbers of nodes, and might therefore become significant on some 
exascale platforms. However, on the resources used for our performance 
measurements, we observed typically very few node failures, even when under high 
stress. During a campaign of 64 proteins, 25 replicas each, and 2-4 nodes per replica 
(executed on Blue Waters), only 2 node failures occurred (even though this campaign 
was executed twice). It should be noted that these two campaigns were executed 
shortly after Blue Waters came back online after a shutdown period, so the system 
may have been in a more stable state than after a long period of continuous usage. 
Nevertheless, there is little evidence on present systems (even when using hundreds of 
thousands of cores) that node failures will significantly impact the scalability of HTBAC 
in the short to medium term, although unforeseen issues might well arise on the e.g. 
billions of cores a full exascale machine may contain. This remains an active research 
topic, and in principle we understand, in the context of RC, how to deal with potential 
node failure in an automatic way. However, given this experiment we have not yet 
implemented automatic detection and recovery of node failures into the RC pattern. 
We intend, as larger machines come available, to continue running such huge 
campaigns to understand the actual node failures, and when needed, to realise fault 
tolerance and recovery mechanisms into the RC pattern. 
 
 Conclusions and prediction for Exascale 
Extrapolating from the promising weak scaling performance analysis presented above, 
we might expect good scaling of replica based applications at even greater node 
counts. Our studies have not yet shown any limitations that might preclude efficient 
use of exascale services. Differences in architecture and hardware may, naturally, 
affect this, and as the COMPAT stack matures, we will obtain more performance data 
to further clarify the viability of such applications on exascale machines.  
As we demonstrated in deliverable D2.2 and D3.2, replica computing can also very well 
be executed in a distributed mode, running replicas across a range of supercomputers, 

                                                
1http://www.gauss-centre.eu/SharedDocs/Pressemitteilungen/GAUSS-CENTRE/EN/2016-
03_SuperMUC_Pers_Med.html?nn=1290050 
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with the multiscale computing patterns algorithms and software facilitating the 
detailed deployment. We continue to explore these capabilities, but this will require a 
production ready distributed supercomputing environment, such as the ComPat EEE. 
The European Supercomputing landscape would, in our opinion, very much benefit 
from such an environment, e.g. operated under the governance of PRACE. We have 
demonstrated that our middleware (QCG) is production-ready, and that our RC pattern 
is capable of exploiting such distributed HPC resources in a very efficient way. In 
combination with the weak scaling performance as reported in this deliverable, this 
would even allow us to reach the Exascale on a RC application by aggregating the 
power of sub-exascale machines. To conclude, ComPat has demonstrated that this is a 
viable option. 
 
 HemeLB (monolithic representative) 
The Experimental Execution Environment did not have sufficiently large resources for 
determining large scale monolithic runs. As we have argued in Deliverables D2.1 and 
D3.1, and demonstrated in D2.2 and D3.2, the primary models in Extreme Scaling 
patterns are large scale monolithic codes. We have already demonstrated how the 
multiscale computing patterns algorithms and software can efficiently deploy Extreme 
Scaling applications on the EEE. The next step is to study in detail if and how the 
primary models themselves can scale to the largest HPC machines currently available 
to us. 
We therefore used ARCHER (up to 96k cores) and Blue Waters (up to 300k cores) for 
our largest runs. The ARCHER supercomputer in Edinburgh, UK is a Cray XC30, with 
dual 12-core Intel Xeon E5-2697v2 (Ivy Bridge) 2.7 GHz processors joined by two QPI 
links, connected via a proprietary Cray Aries interconnect in a dragonfly topology. The 
Blue Waters supercomputer in Illinois is a Cray XE6/XK7 system consisting of more 
than 22,500 XE6 compute nodes (each containing two AMD Interlagos processors, with 
8 floating point cores each). 
 
 Scalability and resource usage 
Unlike the Replica Computing case explored earlier in this report, the most 
scientifically relevant scaling for such a monolithic application was determined to be 
strong scaling. While weak scaling would allow (physically) larger systems to be 
simulated in the same time (on more cores), the characteristic time scales of processes 
of interest typically scale as a power (greater than or equal to 1) of the system size, 
and thus aiming for constant wall clock time would not yield scientifically useful 
results. 
 
Instead, we focussed on how a system of fixed size might be simulated faster through 
the use of more cores (on the same supercomputer). Our test system was the circle of 
Willis, an important vascular system located at the centre of the brain (and a region in 
which many aneurysms form). Such a system can already be simulated using (coarser) 
finite element methods, but we use it here as a useful geometry for benchmarking. On 
EPCC ARCHER, we benchmarked with a 15 micrometre resolution geometry (777 
million fluid sites), and on NCSA Blue Waters we used a 7 micrometre resolution 
geometry (5.5 billion fluid sites). Note that in both cases the geometries are highly 
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sparse (<< 1% fluid fraction), posing challenges for load decomposition as compared 
with a dense geometry. 
 
The results of the performance measurements on ARCHER are shown in Figs. 3 and 4 
[Patronis, A., Richardson, R. A., Schmieschek, S., Wylie, B. J., Nash, R. W., & Coveney, P. 
V. (2018). Modelling Patient-Specific Magnetic Drug Targeting within the Intracranial 
Vasculature. Frontiers in physiology, 9, 331.]. The profiling of the code was carried out 
using the parallel performance tool, Scalasca (http://scalasca.org/). 
 

 
Fig. 3: Strong scaling of HemeLB up to 96k cores on EPCC ARCHER, showing both 
initialisation and simulate phases. 

 
Fig. 4: Wall clock time and efficiency metric for strong scaling of HemeLB on EPCC 
ARCHER, up to 96k cores. 
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In Fig. 3 we see the speed-up of HemeLB from 3000 cores to 96000 cores, while Fig. 4 
shows the corresponding measured wall-clock time, and measure of parallel efficiency. 
 
There is a negligible amount of MPI collective communication, and the amount of non-
blocking point-to-point communication for data exchange decreases in proportion to 
computation time. Therefore, communication efficiency remains above 0.89. Load 
balance, however, starts at 0.86 and progressively deteriorates to 0.76, such that the 
overall parallel efficiency degrades to 0.72 once at 96,000 cores. 
 
In our second study, we performed benchmarking of HemeLB on NCSA Blue Waters up 
to 300000 cores, using a higher resolution system (with approximately double the 
number of fluid sites). At such a high number of cores and low fluid site count per core 
(approximately 5000 sites per core) it was more challenging to avoid overheads from 
the use of a profiling tool such as Scalasca, so we focussed only on wall clock time per 
run. The resultant performance data is given in the following table: 
 

# cores # nodes wall clock time (simulate phase) [s] 

16000 1000 3490.868 

32000 2000 1799.434 

64000 4000 0942.717 

128000 8000 0494.497 

256000 16000 0376.673 

300000 32000 0557.471 

Table 1: Data for strong scaling study on Blue Waters plotted in Fig. 5. 
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Fig. 5: Strong scaling of memory-optimized HemeLB on Blue Waters, up to 256k cores, 
for a 5.5 billion fluid site circle of Willis geometry. 
 
In Fig. 5, we see the results of the strong scaling on of HemeLB on Blue Waters, shown 
here up to 256k cores. The performance degradation thereafter is attributed to 
significant load imbalances (due to the difficulty of minimising the communication 
surface in such a complex, sparse geometry) and the very low computational load per 
core (5000 sites on average). 
 
It was unfortunately not possible to obtain energy usage information from ARCHER or 
Blue Waters (they do not make this information available to users). 
 Node failure rate 
Node failure rate on BW was low, even at 300k cores, although on exascale machines 
this is expected to be a significant issue - monolithic applications will be particularly 
vulnerable to this. Similarly, on ARCHER we found a negligible node failure rate under 
normal conditions - however: when running multiple OOM jobs over the whole 
system, subsequent jobs appeared to fail on the released nodes. 
 Conclusions and prediction for Exascale 
Our monolithic test application used in the above performance analysis shows very 
good strong scaling for the given system sizes. However, due to the locality of 
interactions in the lattice-Boltzmann formulation (and hence locality of information 
transfer) the challenges of efficiently exploiting extreme parallelism will likely lie not so 
much in the simulation phase - a larger or higher resolution input file may always be 
used - but rather in the creation and initialisation of such enormous input files, and the 
physical time scales one may reach (given that processor speed increases little). The 
focus here on strong scaling is precisely due to this practical need for parallelism to 
increase physical time evolution in the system (rather than merely allow physically 
larger or higher resolution systems) but a more intelligent performance model must 
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take into account the trade-off between the spatial and temporal scales, and the 
combinations allowed at different core counts. 
 
To this end, such a performance model has been developed for lattice-Boltzmann 
simulations (soon to be published by [A. G. Hoekstra, B. Chopard, D. Coster, S. 
Portegies Zwart, P. V. Coveney," Multiscale Computing for Science and Engineering in 
the Era of Exascale Performance", Phil Trans R Soc A, In Press (2018), DOI: 
10.1098/rsta.2018.0144]) the results of which are shown in Fig. 6. 
 

 
Fig. 6: Reachable spatial and temporal scales for a lattice-Boltzmann simulation at 10 
micrometre resolution, given a fixed 1.5 days of calculation time, for cores ranging 
from 1000 (terascale) up to 1 billion (exascale). 
 
In Fig. 6, we see the performance prediction using typical lattice-Boltzmann model 
parameters (in this case for Palabos, but equally applicable to HemeLB), showing the 
achievable time and spatial scales (at 10um resolution) achievable on 1k, 1M and 1G 
cores (the latter representing exascale). 
 
The above has so far considered only the simulate phase of the lattice-Boltzmann 
application. However, as system sizes increase, the initialisation time (during which the 
load decomposition of the system occurs, and ranks read the relevant parts of the 
geometry into their memory) will also increase. The initialisation phase in the Blue 
Waters benchmark simulations varied (approximately) from 15 to 40 minutes, with 
more cores corresponding to longer initialisation. 
 
Conclusion 
The performance work on the Binding Affinity Calculator provides a good indication of 
how Replica Computing (RC) pattern applications are likely to scale under extreme 
parallelism.  
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This includes, to a large extent, the Heterogeneous Multiscale Computing (HMC) 
pattern, for which the greatest computational cost generally lies in the execution of 
replicas. However, as we have elaborated in deliverable D2.2, the dynamic nature of 
HMC, depending on the quality of the surrogate model to capture accurately enough 
the microscale dynamics, makes this less obvious then for the pure RC patterns. It 
might well be that exascale performance is required in phase 1of HMC (the initial 
training of the surrogate) after which HMC applications could resort to reduced 
resources. This remains a topic of research. In the materials HMC application (UCL), for 
example, the similarity between microsimulations is determined in parallel by the 
primary model (which is mostly a Finite Element Solver), but the costs are dwarfed by 
those of running the many submodels (replicas). In the less common case of an HMC 
pattern with a very expensive macroscale (primary) model, the performance on 
exascale will likely more closely follow that of the Extreme Scaling pattern. It is our 
opinion that both RC and HMC type of applications are viable candidates for exascale 
computing, as we have demonstrated on several occasions in ComPat. However, we 
have only been able to ‘scratch the surface’, and more research and demonstrators are 
required to substantiate these conclusions. 
 
In the case of applications following the Extreme Scaling (ES) pattern, the performance 
of the primary model will be of most interest at levels of extreme parallelism. The 
strong scaling performance studies of HemeLB were carried out to test this aspect. 
Prediction work carried out by Chopard et al. [4] indicated (for a general lattice-
Boltzmann application) the expected attainability of physical and temporal scales with 
putative exascale systems (1 billion cores) of order 100 s for 10 cm (or 10 s and 100cm) 
after 1.5 days of wall clock time. Depending on the problem size, it may be more 
efficient to run at lower resolutions, while using several replicas, in order to derive 
uncertainties from the simulations. Again, we believe that ComPat has demonstrated 
that ES can scale to the exascale, if the primary model is capable of extreme scaling 
and if the auxiliary models that may serialize the execution, are deployed in an 
efficient way, maybe even by staging two independent ES runs. This was discussed and 
demonstrated in deliverable D2.2 and D3.2. 
 
Impact of exascale resources on future scientific applications 
The major conclusion of this work is the excellent performance of replica based 
calculations to extreme parallelism supercomputing. While this is directly applicable to 
RC or HMC applications in phase 1 of the performance cycle, the efficient use of ES 
applications may need more careful treatment (depending on the physical and 
temporal scales of the process of interest). One way will likely be to respond to the 
growing desire for uncertainty quantification (UQ) in computational science, leveraging 
the efficiency of replica computing on exascale systems by running several ES 
applications in the same allocation. This will have the benefit of rendering the 
simulation output “actionable”, in the sense that UQ will give users more faith in the 
applicability of the results and thus greater ability to make decisions thereon. 
Additionally, Replica Computing is typically more resistant to node failures. 
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We therefore expect that the actual impact of exascale resources on multiscale 
computing is likely to be to encourage the inter alia use of replica based computing 
patterns (RC or HMC), and quantifying uncertainties in larger simulations (such as the 
primary model of the ES pattern) which is not feasible with present day petascale 
facilities. 


