
 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 1 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

Grant agreement no. 675451

CompBioMed

Research and Innovation Action
H2020-EINFRA-2015-1

Topic: Centres of Excellence for Computing Applications

D2.2 Report on Deployment of Deep Track Tools
and Services to Improve Efficiency of Research and
Facilitating Access to CoE Capabilities
Work Package: 4

Due date of deliverable: Month 27

Actual submission date: December 23, 2018

Start date of project: October 01, 2016 Duration: 36 months

Lead beneficiary for this deliverable: EPCC, UEDIN
Contributors: Bull/Atos, UCL, UvA, UOXF, SARA

Disclaimer
This document’s contents are not intended to replace consultation of any applicable legal sources or the necessary
advice of a legal expert, where appropriate. All information in this document is provided “as is” and no guarantee or
warranty is given that the information is fit for any particular purpose. The user, therefore, uses the information at
its sole risk and liability. For the avoidance of all doubts, the European Commission has no liability in respect of this
document, which is merely representing the authors’ view.

Project co-funded by the European Commission within the H2020 Programme (2014-2020)

Dissemination Level
PU Public YES
CO Confidential, only for members of the consortium (including the Commission Services)

CI Classified, as referred to in Commission Decision 2001/844/EC

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 2 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

Table of Contents

1 Version Log .. 4
2 Contributors .. 4
3 Acronyms and Definitions ... 5
4 Executive Summary ... 7
5 Introduction ... 7
6 Access to CompBioMed HPC systems .. 8

6.1 The CompBioMed HPC systems ... 8
6.2 How to get Access .. 8

7 Tools and Services to Improve Efficiency .. 9
7.1 Debugging tools .. 10

Valgrind: Memory debugging .. 10
Padb - parallel application debugger ... 10
Cray ATP .. 10
DDT Debugger ... 11
TotalView ... 11
GDB (GNU Debugger) .. 11

7.2 Profiling tools ... 11
Scalasca .. 11
Paraver .. 12
Intel Parallel Studio XE and Vtune ... 12
gperftools: profile and call-graph .. 12
CrayPat .. 12
Arm MAP ... 12

7.3 Workflow management tools ... 13
Taverna .. 13
MMSF and Muscle ... 13
Radical-Cybertools ... 13
Stopos .. 14

8 Collaboration with other CoEs ... 14
POP .. 14
ComPat .. 14
VECMA ... 15

9 Progress on Improving the Efficiency of CompBioMed Applications 16
Alya .. 16
HemeLB ... 16
HemoCell ... 17
Palabos .. 17
BAC .. 17

9.2 Scalasca Experience: POP collaboration ... 18
9.3 HemoCell at Bull Atos ... 19
9.4 Improving the BAC and HemeLB: ComPat Collaboration 21

10 General Guidance to Improve the Efficiency of Simulations. 21
10.1 Exascale machines ... 21
10.2 How to Exploit Current and Future HPC Machines Efficiently 22

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 3 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

11 Conclusions and Future Work ... 23
12 Appendix A: A Rough Guide to Preparing Software for Exascale 25

12.1 Software preparations ... 25
12.2 Improve serial code ... 26
12.3 Introduce vector processing .. 26
12.4 Improve MPI code ... 27
12.5 Improve MPI parallelism ... 28
12.6 Introduce OpenMP for threads on cores and OpenACC for GPUs. 28
12.7 Improve OpenMP parallelism .. 29
12.8 General programming tips .. 29
12.9 Code Longevity .. 29

13 Appendix B: Bull/Atos report on Task2.6 Work Done .. 31
13.1 Bull ... 31
13.2 Background ... 31
13.3 Objectives of this deliverable .. 32
13.4 Work performed in this deliverable .. 32
13.5 Organisation of this report .. 33

Setup (hardware configuration and Simulation parameters) 33
Scalability Tests ... 35
Profiling ... 38
MPI time analysis ... 38
Hotspot functions/loops .. 39

13.6 Optimisation Tracks ... 41
Attempt to utilise full potential of x86 instruction set .. 41

13.7 Loop vectorisation ... 42
13.8 Reproducibility .. 46
13.9 Single Node Optimisation .. 47
13.10 Possible alternatives to Palabos .. 47

OpenLB .. 48
WaLBerla ... 48

13.11 Conclusion ... 48
Meetings .. 49

14 Appendix C: Report of UCL’s exascaling BAC and HemeLB. 50

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 4 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

1 Version Log

Version Date Released by Nature of Change

V0.1 16/10/2018 Gavin J. Pringle Draft of template

V0.2 5/11/2018 Gavin J. Pringle Included input from UCL,
introduced temporary Section to
help encourage input, responded
to questions.

V0.3 19/11/2018 Gavin J. Pringle Major update with all input from
co-authors folded in.

V1.0 7/12/2018 Gavin J. Pringle Updated text in light of
Reviewers’ comments

V1.1 21/12/2018 Gavin J. Pringle Updated text in light of final
Reviewers’ comments.

2 Contributors

Name Institution Role

Gavin J. Pringle UEDIN Principal Author

Victor Azizi UvA Co-author

Francesc Florencio UOXF Co-author

Marco Verdicchio SARA Co-author

Robin Richardson UCL Co-author

Alexander Patronis UCL Co-author

Franck Chevalier ACE Co-author

Paul Karlshofer BULL Co-author

Okba-Nafie Hamitou BULL Co-author

Jonas Latt UNIGE Reviewer

Jazmin Aguado BSC Reviewer

Emily Lumley UCL Reviewer

Peter Coveney UCL Reviewer

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 5 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

3 Acronyms and Definitions

Acronyms Definitions

AMD Advanced Micro Devices

ATP Abnormal Termination Processing

BAC Binding Affinity Calculator

BSC Barcelona Supercomputing Centre

CFD Computational Fluid Dynamics

CoE Centre of Excellence

ComPat Computing Patterns for High Performance Multiscale Computing

CPU Central Processing Unit

CSCS Swiss National Supercomputing Centre (Centro Svizzero di Calcolo
Scientifico)

CT-scan Computerised Tomography Scan

CUDA Compute Unified Device Architecture

DEM Discrete Element Modelling

ETP4HPC European Technology Platform for High Performance Computing

FLOPS FLoating point OPerations per Second

FPGA Field Programmable Gate Arrays

GASPI Global Address Space Programming Interface

GDB GNU Debugger

GNU GNU’s not unix

GPAS Partitioned Global Address Space

GPGPU General Purpose Graphics Processing Unit

GPU Graphics Processing Unit

GSISSH Grid Security Infrastructure Secure Shell

GUI Graphical User Interface

HDF5 Hierarchical Data Format

HPC High Performance Computing

HTC High-Throughput Computing

I/O Input/Output

LBM Lattice-Boltzmann Method

MMSF Multiscale Modelling and Simulation Framework

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 6 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

MPI Message Passing Interface

OmpSs OpenMP + StarSs extensions

OpenACC For Open Accelerators

OpenCL Open Computing Language

OpenMP Open Multi-processing

POP The Performance Optimisation and Productivity Centre of Excellence in
Computing Applications

Qt Q-Thread

Scalasca SCALAble performance analysis of large SCale Applications

SMP Shared Memory Parallelism

SSH Secure Shell

StarSs Star (for wildcard ‘*’) Super scalar

STL Stereolithography

UPC Unified Parallel C

VECMA Verified Exascale Computing for Multiscale Applications

VVUQ Validation, Verification and Uncertainty Quantification

WP Work Package

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 7 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

4 Executive Summary
CompBioMed end users are able to gain direct access to one or more of its HPC
ecosystems of Tier0, Tier1 and Tier2 platforms. CompBioMed offers expert HPC
assistance, along with powerful tools for debugging, profiling and workflow managers,
to ensure simulations run efficiently on up to at least tens of thousands of cores on
today’s HPC systems. Moreover, application authors also exploit these tools to prepare
for exascale machines. This report details these tools, and presents progress to date on
four of the largest codes, namely Alya, HemeLB, HemoCell and BAC, achieved by
CompBioMed in collaboration with co-existing CoEs and H2020 programmes. Lastly,
for added value, detailed technical guidance is presented on how to improve
applications in general to efficiently exploit future exascale systems.

5 Introduction
End users are looking to run their research simulations efficiently on CompBioMed HPC
resources, and this document reports access mechanisms to these resources and the
tools available to help run their codes efficiently, both on current and future resources,
including exascale. In particular, the document describes progress in and impact of
deployment of tools and services in support of complex workflows, including
multiscale models, on available HPC environments. This report does not cover the
work that was done to port the applications to the CompBioMed platforms, but does
describe work done using these tools to prepare CompBioMed solutions/applications
for future exascale systems.

This document reports on some of the results of activities conducted in WP2 Task 2.6:

Task 2.6: Develop Plans for and Implement the Upscaling of CompBioMed Production
Applications for Future HPC Platforms, Including those Heading Toward the Exascale
(M12-M30) [Deep Track]

Leader UEDIN (6 PM); Partners: UCL (6 PM), UvA (6), UOXF (6), SARA (6), BULL (6)

Use co-design principles in partnership between application code developers, HPC
centres and hardware vendors to plan optimal development of future releases of the
exemplar codes in this project so as to ensure that they will run effectively on
forthcoming architectures on the path to exascale, as well as on GPGPU and novel
architectures such as Intel Xeon Phi co-processors. These applications will not only
consist of monolithic codes running across large numbers of cores within the
production partition of a computer, but in many cases are componentised workflows,
including multiscale applications, that will need to be optimally mapped onto these
architectures. Performance prediction tools will be applied for some of the complex
componentised applications to forecast performance on emerging systems and the
impact on future biomedical applications.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 8 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

The structure of the remainder of this deliverable is as follows. The following Section,
Section 6, describes the CompBioMed HPC ecosystem and how end users can access
HPC resources. Following this, we then describe the Tools and Services, including Deep
Track tools, that have been deployed on these CompBioMed HPC resources,
specifically for debugging, profiling and workflow management. The next Section
details how CompBioMed collaborates with other Centres of Excellence and H2020
programmes, namely POP, ComPat, and VECMA. Following, in Section 9, we describe
the progress on scaling our largest codes, namely Alya, HemeLB, HemoCell and BAC, in
preparation for Exascale. Section 9 also contains three overviews: the first on our
experience with the profiler Scalasca and our collaboration with POP; the second
describes the work done by Bull under Task 2.6 to improve the performance of
HemoCell; and the third presents an overview of a collaboration with ComPat to
improve HemeLB and BAC. The full reports of the latter two are presented in the
Appendices A and B, respectively. Finally, we present WP4’s guidance on how to
prepare applications to scale on thousands of cores on both the HPC systems of today
and of the exascale systems of the future. Appendix A also includes an Exascale Crib
Sheet for programmers.

6 Access to CompBioMed HPC systems

6.1 The CompBioMed HPC systems
Some of CompBioMed’s Core Partners, namely BSC, University of Edinburgh, and
SURFsara provide access to their HPC systems, either through participation in the
Centre of Excellence, or via PRACE Tier0 access. These systems are ARCHER and Cirrus,
at EPCC (University of Edinburgh), UK; MareNostrum, at BSC, Spain; along with
Cartesius and Lisa at SURFsara, the Netherlands. Further, some of CompBioMed
Associate Partners also offer HPC access, specifically SuperMUC and SuperMUC-NG
(anticipated), at the Leibniz Supercomputing Centre, Germany; and Prometheus, at
Cryfronet, Poland. Additionally, CompBioMed has access to HPC systems outwith of its
Core and Associate Partners offerings, such as Piz Daint, at CSCS, Switzerland; and
three massive platforms in the US, namely BlueWaters at the National Center for
Supercomputing Applications, Titan at Oak Ridge Leadership Computing Facility, and
Theta at the Argonne Leadership Computing Facility. Peter Coveney is currently
anticipating major access to Summit, number one on the current Top500 with a peak
performance of 200 petaflops, by early in 2019; and there are hopes to get access to
Aurora also at the Argonne Leadership Computing Facility.

6.2 How to get Access
End users from both Core and Associate Partners may apply for access to many of
these systems via the email address allocations@compbiomed.eu, where they should
apply with a brief description of what HPC platform they wish to access, what
simulations they are interested in performing, what software they aim to employ, and
how many core hours and disk space they require. To gain access to Tier0 resources,
we encourage end users to apply to PRACE. UCL also command access to a vast suit of

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 9 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

supercomputers throughout Europe and the US, including SuperMUC(-NG), Blue
Waters, Titan and Summit, and are able to allocate time to collaborators on these
systems.

Once permission has been granted, end users are then put in contact with the
associated HPC centre, who will guide them through the process of direct access to the
HPC platform, using either SSH, which requires a username/password combination, or
GSISSH, which requires Certificates. Both access methods grant the end users access
via the Unix command line interface.

Either the target simulation codes are already ported and tuned to the existing target
HPC architecture, or the end user, working closely with the HPC centre’s experts, can
install the simulation codes themselves. However, the efficiency of a tuned simulation
code depends on the target simulation, e.g. a small simulation will not scale to 1000s
of cores; thus, HPC centres offer a range of tools and services to ensure the target
simulations run efficiently.

The following tools and services describe how a particular simulation can be tuned to
the target HPC platform. It is important to note that, once ported, these same tools
and services can be used to prepare the codes for future exascale HPC systems using
that current HPC platform. In conjuncture with these tools, we are preparing for
exascale systems via the co-design process, wherein vendors work with end users to
ensure future supercomputers are constructed to ensure key applications will run
efficiently. CompBioMed is actively involved in co-design, and this is addressed in
Section 10.2.

7 Tools and Services to Improve Efficiency
This Section describes the tools and services, including deep track tools, which are
deployed on the CompBioMed HPC resources at BSC, EPCC and SURFsara.

The tools and services for improving a simulation’s efficiency can be grouped into the
following types: debugging tools, profiling tools, and workflow management tools.
Debugging tools are powerful accessories which are essential when a simulation
crashes and/or produces the incorrect expected result. Profiling tools produce reports
on past simulations to provide insight on where the simulation is inefficient, such as
highlighting bottlenecks due to load imbalance, or I/O, or MPI communications, etc.
Workflow management tools enable multi-component simulations, where the input to
one simulation is formed from the output of another simulation; or multi-scale
simulations, where multiple simulations of different time/length scales, are tightly
coupled together; or enable the end user to run ensemble runs, where the same code
is run simultaneously running slightly different simulations, often referred to as HTC.

Outwith of CompBioMed, our end users may access the POP CoE’s resources to
increase the scalability of their simulations, to ensure efficiency and prepare for
exascale. For instance, UCL have worked with POP to scale HemeLB up to 250,000+

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 10 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

cores. At such a core count, it is found that standard profiling and debugging tools, and
parallelisation software such as MPI-2, fail due to lack of functionality, the massive
scales involved, etc. To this end, Peter Coveney is working with the MPI Forum (in
particular with Tony Skjellum at University of Tennessee) to get MPI-4 released in
2020, through development work on a use case of HemeLB. This work will ensure that
64-bit communications will function efficiently at very large core counts.

Inside CompBioMed, the HPC Core Partners, namely BSC, EPCC, and SURFsara, have
enabled the most common debugging tools, profiling tools, and Workflow manager
tools which enables CompBioMed end users to improve their simulation’s efficiency
and prepare for exascale. The following section describes the tools currently enabled
at the three HPC sites.

It is interesting to note that some of these tools, whilst ensuring efficient use of the
target HPC system, may not be suitable for exascale machines, given they currently fail
at larger core counts, e.g. Parmetis has been seen to fail on 50,000 cores. To this end,
CompBioMed are actively testing other tools, such as ALL from the CoE E-CAM, which
is currently showing real potential.

7.1 Debugging tools

 Valgrind: Memory debugging
Valgrind is an instrumentation framework for building dynamic analysis tools. There
exist Valgrind tools that can automatically detect many memory management bugs
and threading bugs, and can profile programs in good detail.

Deployed at BSC, EPCC and SURFsara.

 Padb - parallel application debugger
Padb is a Job Inspection Tool for examining and debugging parallel programs. Primarily,
it simplifies the process of gathering stack traces on compute clusters; however, it also
supports a wide range of other functions. It is an open source, non-interactive,
command line, which can be used within scripts, intended for use by both
programmers and system administrators.

Deployed at SURFsara.

 Cray ATP
Cray ATP (Abnormal Termination Processing) is a tool that monitors your application
and, in the event of an abnormal termination, it will collate the failure information
from all the running processes into files for analysis.

Deployed at EPCC

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 11 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

 DDT Debugger
DDT is a tool produced by Allinea Software, now part of Arm of Warwick, UK, and is
employed for debugging scalar, multi-threaded and large-scale parallel applications,
which is widely used for debugging MPI and threaded (pthreads or OpenMP).

Deployed at BSC and EPCC.

 TotalView
TotalView is a comprehensive debugging tool for parallel applications. It is easy-to-use,
supports multiple platforms, compilers, and programming languages, including the
MPI, OpenMP, OpenACC and CUDA parallel programming paradigms.

Deployed at EPCC and SURFsara.

 GDB (GNU Debugger)
The standard GNU debugger: GDB. This debugger currently only supports the
command line interface.

Deployed at BSC, EPCC and SURFsara

7.2 Profiling tools

 Scalasca
Scalasca is a powerful and popular profiling tool, and stands for SCALAble performance
analysis of large SCale Applications. Scalasca is an open-source toolset that can be used
to analyse the performance behaviour of parallel applications and to identify
opportunities for optimisation.

It is available with an open-source license from www.scalasca.org, and offers flexible
runtime summarisation/profiling and event tracing. Its primary focus is on MPI,
OpenMP and hybrid codes, namely which employ both MPI and OpenMP. Applications
must be prepared in advance via “instrumentation”: MPI usage is instrumented simply
by linking the application to the appropriate library, whilst OpenMP usage is
instrumented by recompiling from source using Scalasca's own modified version of the
target compiler.

Furthermore, it was recently extended to support a variety of other threading
paradigms, such as Pthreads, Qt, and CUDA/OpenCL/OpenACC, and it supports most
HPC systems, including IBM Blue Gene, K computer, Cray, and also heterogeneous
systems like SURFsara’s JURECA “Cluster+Booster” (Xeon + Xeon Phi).

It is CompBioMed’s experience that Scalasca is the best profiling tool when working on
hundreds of thousands of cores, where other tools have been seen to fail at a few tens
of thousands of cores.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 12 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

Deployed at BSC, EPCC and SURFsara.

 Paraver
Paraver, a performance analyser based on traces with flexibility to explore the
collected data. The associated Dimemas simulator can be used to predict the
application's behaviour under different scenarios. Performance analytics modules
extract insight from the raw performance data.

Deployed at BSC.

 Intel Parallel Studio XE and Vtune
This software development product developed by Intel facilitates native code
development on Windows, macOS and Linux in C++/C and Fortran for parallel
computing. In addition to Intel compilers and specialised libraries it provides also
debuggers, memory analysers, and profiling tools, via Vtune.

Deployed at EPCC and SURFsara.

 gperftools: profile and call-graph
With gperftools it is possible to profile a program and create a call-graph. Profiling can
be done on several levels, including performance studies of individual lines of code.
Another advantage is that the binary can be used as-is. The tools work in principle with
any binary created by either Gnu or Intel compilers.

Deployed at SURFsara.

 CrayPat
CrayPat can perform two types of performance analysis: sampling experiments and
tracing experiments. A sampling experiment probes the code at a predefined interval
and produces a report based on these statistics. A tracing experiment explicitly
monitors the code performance within named routines. Typically, the overhead
associated with a tracing experiment is higher than that associated with a sampling
experiment but provides much more detailed information.

Deployed at EPCC.

 Arm MAP
Arm MAP, is an application profiler produced by Allinea Software now part of Arm of
Warwick, UK, for profiling the performance of C, C++ and Fortran 90 software,
parallelised using MPI and/or OpenMP.

Deployed at BSC and EPCC.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 13 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

7.3 Workflow management tools

 Taverna
In Taverna, workflows are represented in terms of direct acyclic graphs. Each node
contains a part of the workflow in terms of calls to external software. These building
blocks can be run independently, provided that all the required inputs are available at
runtime. The graph edges represent message passing operations between the
workflow building blocks.

Taverna is provided in two versions aimed at prototyping and production phases,
respectively. Taverna Workbench is a desktop client including a GUI to ease the
creation and editing of workflows through a drag and drop interface.

Deployed at BSC, EPCC and SURFsara.

 MMSF and Muscle
Multiscale Modelling and Simulation Framework (MMSF) and MUSCLE: Multiscale
Modelling and Simulation Framework (MMSF) for designing, programming,
implementing and executing multiscale applications. The MMSF offers many benefits:
a clear methodology, software and algorithm reuse, the possibility to couple new and
legacy codes, heterogeneous distributed computing, and access to unprecedented
computing resources. The framework is open-source and has been co-developed by
CompBioMed Core Partners. It allows a more fine-grained and performance oriented
coupling of simulation kernels than Taverna.

Deployed at BSC, EPCC and SURFsara.

 Radical-Cybertools
This workflow tool seeks to address the limitations imposed by HPC queuing systems
to create efficient large-scale hybrid applications. An example of such an application is
the Binding Affinity Calculator (BAC), a decision support tool which uses molecular
level computer simulation to reliably predict the binding affinities (free energies) of
molecules with target proteins, and therefore identify those most likely to bind to the
protein. BAC has been built to integrate and automate the multi-step process of model
building, simulation, and data analysis for molecular level drug-receptor interactions. It
constitutes a sophisticated computational pipeline built from selected software tools
and services, and which relies on access to a range of computational resources.

BAC depends on the ability to perform hundreds of separate parallel simulations on a
high performance computing platform, each of which can require 50-200 cores
depending on the system. The BAC workflow automates much of the complexity of
running and marshalling these simulations, as well as collecting and analysing data.
This requires a workflow management tool that integrates closely with the queuing
system on an HPC resource, in order to efficiently allocate replicas between available
compute nodes, and also manage the execution and data staging between different
steps of the simulation protocol. For this purpose, BAC uses the Pilot Job Manger, part

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 14 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

of RADICAL-Cybertools, a suite of abstractions-based and standards-driven tools that
provide a common, consistent, and scalable approach to high-performance and
distributed computing.

Deployed at EPCC.

 Stopos
The Stopos software, developed by SURFsara and available on both their HPC systems,
gives the opportunity to define and get lines, which can be used as parameters, in an
orderly way. Stopos takes care that these lines are given out one after each other. It
can be used to submit many jobs each with about the same content, but with different
parameters for the program to run. Examples are parameter scans and Monte-Carlo
simulations. Using Stopos, it is quite easy to build jobs that use the nodes of the
computing system in an optimal fashion. Moreover, it is possible to correct for failing
jobs (time limit, system problems etc).

Deployed at SURFsara.

8 Collaboration with other CoEs
Several CompBioMed applications undergo almost continuous performance
monitoring and improvement, such as Gromacs, BAC, HemoCell, Alya, and Palabos.
These improvements are not only done by CompBioMed staff, but also in collaboration
with other EU programmes.

 POP
The Performance Optimisation and Productivity Centre of Excellence in Computing
Applications provides performance optimisation and productivity services for academic
and industrial codes in all domains.

Highly scalable codes can effectively use thousands of compute nodes (a compute
node contains many cores); however, equally scalable performance tools are needed
to assist with additional tuning by quantifying parallelisation inefficiencies and
identifying optimisation opportunities. POP assessments help characterise parallel
application performance and scalability by identifying inefficiencies that constitute the
most productive opportunities for optimisation.

CompBioMed and POP have collaborated on improving the performance of HemeLB on
the BlueWaters Cray XE in the US (POP-AR-102: HemeLB on Cray XE for CompBioMed).
HemeLB is a lattice-Boltzmann code for simulation of hæmodynamics in complex
geometries.

 ComPat
ComPat (http://www.compat-project.eu) is a science driven project on Computing
Patterns for High Performance Multiscale Computing. The urgent need to push the

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 15 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

science forward, and stay world leading in simulation driven science and engineering is
its major motivation.

Multiscale phenomena are ubiquitous, and they are the key to understanding the
complexity of our world. Despite the significant progress achieved through computer
simulations over the last decades, researchers are still limited in their capability to
accurately and reliably simulate hierarchies of interacting multiscale physical processes
that span a wide range of time and length scales, thus quickly reaching the limits of
contemporary high performance computing at the tera and petascale. Exascale
supercomputers promise to lift this limitation, and within ComPat, multiscale
computing algorithms have been developed that are capable of producing high-fidelity
scientific results and are scalable to exascale computing systems.

The ComPat approach was based on generic multiscale computing patterns that allow
implementation of customised algorithms to optimise load balancing, data handling,
fault tolerance and energy consumption under generic exascale application scenarios.

ComPat’s ambition is to establish new standards for multiscale computing at exascale,
and provision a robust and reliable software technology stack that empowers
multiscale modellers to transform computer simulations into predictive science.

Several of CompBioMed’s Core Partners are also ComPat members and are actively
involved in the methodologies required to tightly couple different biomedical
simulations of differing time/length scales.

 VECMA
VECMA, or Verified Exascale Computing for Multiscale Applications, is a FET HPC
project, where the purpose of the VECMA project (https://www.vecma.eu) is to enable
a diverse set of multiscale, multiphysics applications — from fusion and advanced
materials through climate and migration, to drug discovery and the sharp end of
clinical decision making in personalised medicine — to run on current multi-petascale
computers and emerging exascale environments with high fidelity such that their
output is “actionable”. That is, the calculations and simulations are certifiable as
validated (V), verified (V) and equipped with uncertainty quantification (UQ) by tight
error bars such that they may be relied upon for making important decisions in all the
domains of concern. The central deliverable will be an open source toolkit for
multiscale VVUQ based on generic multiscale VV and UQ primitives, to be released in
stages over the lifetime of this project, fully tested and evaluated in emerging exascale
environments, actively promoted over the lifetime of this project, and made widely
available in European HPC centres.

CompBioMed will follow the VECMA project closely, and will employ the VVUQ toolkit
where applicable.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 16 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

9 Progress on Improving the Efficiency of CompBioMed Applications

Several CompBioMed applications undergo almost continuous performance
monitoring and improvement, such as Alya, HemeLB, HemoCell, Palabos, and BAC.

 Alya

Perform Cardiac Computational Mechanics simulations, from tissue to organ level.
FEM-based electro-mechanical coupling solver, specifically designed for the efficient
use of supercomputing resources. The contact is mariano.vazquez@bsc.es.
Provider: BSC
Current users: 40 internal and 40 external users
Access mode: Direct
URL: https://www.bsc.es/research-and-development/software-and-

apps/software-list/alya
Use scenario: Non-clinical research; Clinical research; Clinical decision support;

Design & optimisation for medical devices; In silico clinical trial.
HPC Systems: MareNostrum, ARCHER, Cartesius
HPC motivation: Solve unreducible model; Multiscale model; Strongly coupled

multiphysics model.

 HemeLB
This code simulates the blood flow through a stent (or other flow diverting device)
inserted in a patient’s brain. The aim is to discover how different stent designs (surface
patterns) affect the stress the blood applies to the blood vessel, in particular in the
region of the aneurysm being treated. The pipeline also allows the motion of
magnetically steered particles, for example coated with drugs, to be simulated and
estimates made as to where they might statistically end up. More technically, the
pipeline takes as input an STL file of the surface geometry of the patient, generally
obtained via segmentation of DICOM images from a CT-scan. Also required is the
(peak) velocity-time profile of fluid flow at each of the inlets to the simulated region. If
inserting a stent, the start and end points of the stent in the vessel must be specified,
as well as an image file containing a black and white representation of the surface
pattern (black signifying ‘solid’). The HemeLB setup tool voxelises the geometry
bounded by the input STL at the given resolution, and HemeLB (lattice-Boltzmann CFD
solver) then simulates the fluid flow within that geometry, using the given velocity-
time profiles for each inlet. Once complete, the simulation output is analysed using the
hemeXtract utility, which can produce images of cross-sectional flow, or 3D shots of
wall shear stress distribution in the geometry using ParaView visualisation software.
The contact is robin.richardson@ucl.ac.uk.
Provider: UCL
Current users: 40 users (mostly academia)
Access mode: Direct
URL: https://github.com/UCL/hemelb

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 17 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

Use scenario: Open Source software used primarily in academia. Clinical research;
Clinical decision support; In silico clinical trial.

HPC Systems: EPCC ARCHER, LRZ SuperMUC, PSNC Prometheus
HPC motivation: Solve unreducible model.

 HemoCell
High-performance library to simulate the transport properties of dense cellular
suspensions, such as blood. It contains validated material model for red blood cells and
additional support for further cell types (white blood cells, platelets). The blood plasma
is represented as a continuous fluid simulated with an open-source LBM solver. The
cells are represented as DEM membranes coupled to the plasma flow through a tested
in-house immersed-boundary implementation. HemoCell is computationally capable of
handling a large domain size with high number of cells (> 10^4-10^6 cells). The contact
is g.zavodszky@uva.nl.
Provider: UvA
Current users: NTU, BME
Access mode: Source
URL: http://www.hemocell.eu
Use scenario: Clinical research, Clinical decision support, In silico clinical trial.
HPC Systems: Cartesius, Lisa, SuperMUC
HPC motivation: Solve unreducible model; Multiscale model; Strongly coupled

model.

 Palabos
Palabos is a software library for the computation of complex flows with the lattice
Boltzmann method. It is highly parallel and versatile, and used in many areas of
industry. For computational biomedicine, it offers front-end applications: A simulation
program for the effect of deployed stents in an artery, and a simulation program for
efficiency improvement of cement injection in vertebroplasty.
Provider: UniGe
Current users: 200 known users from academia and industry
Access mode: Direct
URL: https://www.palabos.org
Use scenario: Clinical research; Clinical decision support; In silico clinical trial.
HPC Systems: UniGe Baobab.
HPC motivation: Solve unreducible model.

 BAC
Workflow tool that runs and analyses simulations designed to assess how well drugs
bind to their target proteins and the impact of changes to those proteins. A collection
of scripts which wrap around common molecular dynamics codes to facilitate free
energy calculations. Use of ensemble simulations to produce robust, accurate and

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 18 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

precise free energy computations from both alchemical and end-point analysis
methodologies. The contact is dave.wright@ucl.ac.uk.
Provider: UCL
Current users: UCL, GSK
Access mode: Service
URL: No current website - DNA Nexus app available only to UCL/GSK at

present
Use scenario: Non-clinical research; Drug discovery; Design & optimisation.
HPC Systems: DNAnexus
HPC motivation: Solve unreducible model; performs uncertainty quantification.

The remainder of this Section describes progress achieved on these applications on
both CompBioMed Core Partner HPC systems, and on HPC systems outwith
CompBioMed.

9.2 Scalasca Experience: POP collaboration
Scalasca is a performance toolset boasting a scalable design and effectiveness that
allows it to be used for the analysis of parallel application execution behaviour on
massively parallel architectures with many thousands of processors. It supports
measurement and analysis of highly-scalable HPC applications, such as HemeLB, which
run on hundreds of thousands of ranks; Scalasca has been shown to scale (with
HemeLB) from 3,744 to 239,615 MPI ranks (288 to 18,432 XE compute nodes of Blue
Waters), with minimal computational overhead. CompBioMed developers have
worked closely with the Performance Optimisation and Productivity (POP) Centre of
Excellence based at the Jülich Supercomputing Centre, where Scalasca is developed, to
optimise the initialisation phase of HemeLB.

Our basic analysis workflow when using Scalasca begins with instrumentation of the
HemeLB binary. When running the instrumented code, we choose to generate a
summary report with aggregate performance metrics for individual function call paths
(but may also select to include event traces recording individual runtime events). Our
use of Scalasca, when applied to HemeLB, has been limited to the production of
summary reports, which provide hardware counter-based performance metrics and a
general overview of performance behaviour. With these reports members of POP CoE
prepare complementary performance audits (HemeLB has been profiled to 99,600
ranks on ARCHER, and to 239,615 ranks on Blue Waters, i.e. 81% of the available XE
compute nodes). We have yet to perform finer-grained profiling using tracing, which
instructs each process to generate a trace file containing records for its process-local
events. Future work will involve the instrumentation of more classes/methods and
tracing (providing time-line visualisation) for an in-depth analysis of HemeLB's
simulation phase (which uses a sophisticated non-blocking communication pattern
known as 'coalesced communication' that can only be effectively monitored using
profiling tools).

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 19 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

Observations have led to significant reductions in HemeLB's memory utilisation. With
metrics obtained from Scalasca, we were able to identify large data structures that
were limiting HemeLB's application to larger problems. HemeLB is now capable of
loading, decomposing, and simulating problems consisting of ~11 billion lattice sites
(with approximately 50% peak memory usage on Blue Waters). Blue Waters has 22,640
XE nodes, or a possible 362,240 MPI ranks. Decomposing a problem of ~11 billion sites
over the entire machine will result in approximately 30,000 sites/rank - the already
excellent strong scaling of HemeLB to 256,000 ranks (demonstrated without Scalasca
and using a problem dataset of approximately 5 billion sites) may theoretically be
extended to the 362,240 ranks.

9.3 HemoCell at Bull Atos
As part of CompBioMed’s Task 2.6, two of CompBioMed’s Core Partners, namely Bull
in France, and the University of Amsterdam, in The Netherlands, have been working on
the HemoCell application. The goal is to port, profile, optimise and report on the
performance results of a set of applications provided by the CompBioMed community.
HemoCell has been profiled and tested on several compute nodes (Skylake, Haswell,
Broadwell). They also have access to AMD and Intel Xeon Phi compute nodes.

In general, part of Bull’s goal is to co-work with CompBioMed core partners on the
selected HPC codes and report on the implementations of CompBioMed applications
on emerging HPC architectures and porting to new and maturing architectures. The
first step is to port the applications on Bull HPC platform, run scalability tests, then
perform a profiling of the applications to target the most time-consuming function and
loops for optimisations. Finally, the deliverable consists of this report and suggestions
for improving the performances of the applications.

HemoCell is developed by the University of Amsterdam (UvA) and is a high-
performance code which simulates the transport properties of dense cellular
suspensions such as blood (Figure 1) below. The blood plasma is modelled by a
continuous fluid simulated with an open-source Lattice Boltzmann Method (LBM)
solver. On the other hand, the cells are modelled by discrete element method
membranes. Both models are coupled using an immersed boundary implementation.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 20 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

Figure 1 Dense flow (left) and white blood cell extension (right)

Starting from the portable implementation of HemoCell v1.4, the team members of
Task 2.6 took the application and performed scaling test and optimisations on the Intel
Skylake compute nodes.

The profiling of the application led to targeting the hotspots of the application, where
the optimisations need to be directed.

In addition to the optimisation suggestions of the application, this report aims at
determining the best practices for the implementation of numerical methods on
emerging HPC architectures.

The main outcome resides in the fact that the HemoCell code consists in an MPI
implementation of the Lattice Boltzmann Method of Palabos and intensive I/O through
the HDF5 library. The HPC code suffers from a lack of a load balancing method which
causes the application to perform poorly. Fortunately, the upcoming version of
HemoCell shall include a load balancing technique (Parmetis library). It was noticed
that the Palabos library could not fully benefit from the vectorisation possibilities of
the compiler and the processor architecture despite many intrusive and non-intrusive
optimisations.

As a conclusion, a better memory management or data structure can lead to a higher
vectorisation. One may suggest an LBM implementation as well which may benefit
from an OpenMP parallelisation. The latter shall take advantage from future multi-
threaded architectures.

The full report can be found in the Appendix.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 21 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

9.4 Improving the BAC and HemeLB: ComPat Collaboration
This Section outlines the performance studies performed by CompBioMed partners
under the ComPat programme. The full ComPat report can be found in the Appendix.

The CompBioMed Core Partner UCL considered both HemeLB and the BAC with a view
to scaling associated simulations on exascale platforms. Various performance metrics
were considered, as may be most appropriate for the given application e.g. wall clock
time, file sizes, scalability (strong and weak), and energy consumption (where
available). In one weak-scaling application we also consider scalability of the
middleware itself.

To further explore and assess the potential impact of extreme parallelism, we also
carried out performance studies on two applications using even larger
supercomputers. To simplify the assessment, we note that the multiscale applications
can be abstracted as sections of replica computing steps, and large monolithic
applications. For this reason, our predictions as pertain to exascale resource usage
largely come from detailed studies of application performance for a Replica-based
exemplar (the Binding Affinity Calculator, or BAC) and for an exemplar containing a
large monolithic application (HemeLB).

Furthermore, a detailed mathematical model was developed to predict the time and
length scales attainable by a lattice-Boltzmann solver (such as Palabos or HemeLB) in a
fixed time on computers with e.g. 1 billion cores (exascale).

With respect to the exascale, a major conclusion of this work was that, even for those
applications exhibiting excellent strong scaling characteristics, the trade-off between
resolving time or physical length scales in the system will frequently render such
simulations inefficient on enormous core counts when compared to the weak scaling
(replica) case. We therefore expect that the actual impact of exascale resources on
future science applications will be to encourage the use of uncertainty quantification
(techniques that often require multiple runs) in a field where researchers too often
only run large simulations once.

The full report can be found in Appendix B.

10 General Guidance to Improve the Efficiency of Simulations.
This section introduces an overview of how to improve the efficiency of simulations on
generic HPC systems, both current and future exascale platforms. Moreover, this
Section focuses on preparing your simulations for Exascale; however, this guidance
holds for getting the best performance out of today’s current HPC systems as well.

10.1 Exascale machines
HPC platforms have seen their performances increase over the past years and are
reaching a plateau. At the core level, the frequency, i.e. processor speed, together with
the cache, has increased from 1.1GHz to 3.2 GHz and has almost reached an upper

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 22 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

bound. At the same time, CPUs are now able to execute several instructions per cycle,
introducing thus a first level of parallelism. At the node level, the memory bandwidth
continued to grow hand in hand with the processor speed, to keep the processor busy.
A race over the miniaturisation of processor is leading towards more populated chips
but with several constrains: technology for miniaturisation and heat dissipation.

One other important key point is that for many high-performance applications, I/O
performance is a blocking factor. I/O controls the amount of data that can be saved on
disk and enables checkpoint files that can be written to prevent system failure which
will become more crucial as HPC platforms continue growing in size and complexity.
Therefore, I/O performances is already identified as key due to their significant impact
on data intensive applications.

The first special-purpose exascale machines are likely to be for a small set of
applications, where the platforms themselves are built via co-design principles. The
issue of adopting co-design strategies is an extremely important one when it comes to
the transition to exascale high-performance computing. It is based on developing
partnerships with computer vendors and application scientists and engaging them in a
highly collaborative and iterative design process well before a given system is available
for commercial use. The process is built around identifying leading edge, high-impact
scientific applications and providing concrete optimisation targets. CompBioMed
actively promotes HemeLB as a target application program, since it is one of very few
applications that currently utilises multi-petaflop computing platforms to answer key
scientific questions, and is actively being optimised for the emerging exascale.
Specifically, it is hoped that HemeLB is part of the co-design process for the future
Aurora platform at the Argonne Leadership Computing Facility, in the US, where
Aurora is likely to be a pure Intel machine with their own specially developed
accelerator technology.

The first generic exascale machines are likely to be tightly coupled heterogeneous
clusters of many-core/multi-core SMPs, and smaller clusters of accelerators, such as
GPUs, FPGAs, etc. It is our understanding that the first exascale machine that
CompBioMed partners will get access will be Aurora at Argonne Leadership Computing
Facility. This is planned to be a pure Intel machine, with their own specially developed
accelerator technology, built from co-design.

10.2 How to Exploit Current and Future HPC Machines Efficiently
Four key areas can be pointed out which must be invested to prepare software for
exascale platforms, namely performance profiling, deployment of new programming
models, development of new libraries and application co-design.

Profiling, using the tools available today on HPC platforms (see above), enables users
to locate performance bottlenecks and produces efficiency metrics in terms of both
FLOPS and power consumption.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 23 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

Programming models are key to exploiting future exascale platforms. For instance, the
most common programming paradigms, namely MPI and OpenMP, have had their
standards extended to prepare for exascale. Moreover, fewer common paradigms are
becoming more popular, such as Global Address Space (PGAS) Languages, e.g., UPC,
Co-Array Fortran, and GASPI, will aid programmers when seeking to exploit future
hardware. Given the heterogeneous nature of future exascale systems, which will
likely include GPUs and other accelerators such as FPGAs, their associated
programming models, e.g., CUDA, OpenACC, OpenMP-4.0 directives (planned), and
Hybrid programming, e.g., MPI+X, and OmpSs, are all becoming increasingly important.

Employing efficient libraries can typically save the programmer from “reinventing the
wheel”, given that the libraries are often tuned for the target platform, and yet the
programmer’s code stack can remain portable.

Lastly, co-design is where HPC vendors and end users can design the future HPC
systems together, thus avoiding HPC systems that grab the headlines with powerful
performance figures but are impractical for massive scale scientific computation.

Application codes rarely perform and scale well when first parallelised: each doubling
of scale typically exposes a new issue. Ensuring your application will scale on HPC
systems - both today and on the exascale systems of the future - requires stepwise
increasing of scale and validation of correctness, debugging, performance analysis and
tuning. Then, the same process is repeated for each significant code extension or
optimisation.

According to VECMA, there exist three routes to exascale. They are (1) parallelising
single scale models: enabling the use of more cores and reducing execution time; (2)
construct multi-scale models: enabling the use of even more cores, more coupling, and
more simulations incorporated; and finally (3) adding VVUQ (see above): enabling even
more cores, more robustness, reproducibility and reliability.

In the Appendix, we present A Rough Guide to Preparing Software for Exascale. This is
essentially a Crib Sheet where programmers can consult when preparing their code for
future exascale machines. Moreover, this Crib Sheet can also be of use when looking to
make applications more efficient on not only future Exascale machines, but also the
HPC systems available today.

11 Conclusions and Future Work
This deliverable has described the tools, such as debuggers, profilers and workflow
managers, that have been deployed on CompBioMed’s HPC ecosystem that enable
programmers to ensure their simulations make efficient use of the resources.

Further, we have presented how our work, in collaboration with other CoEs and H2020
programmes, have seen the improvement of four of CompBioMed’s largest
applications, namely Alya, HemeLB, HemoCell, and BAC.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 24 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

Lastly, and as added value, we presented some general guidance and a programmer’s
crib sheet, on how to prepare applications for future exascale systems.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 25 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

12 Appendix A: A Rough Guide to Preparing Software for Exascale
This Section is to be used as a Crib Sheet for improving the efficiency of software.

The term Exascale is used to describe HPC hardware capable of at least one exaFLOPS,
or 10^18 FLoating point OPeration per Second. It is envisioned that such machines will
have many multi-core processors, and that the available memory per core will be far
inferior to those on current HPC platforms. This can be seen when attempting to port
MPI codes to IBM Blue Gene machines, or the Intel Xeon Phi family, where the amount
of memory per core is prohibitively small for many codes parallelised using MPI only.
As such, the common practice of running one MPI task per physical core may no longer
be possible for the majority of codes in the future.

The solution for getting codes ready for exascale platforms requires both software and
hardware related strategies. The former, the subject of this note, is described below.
The latter, beyond the scope of this note, is achieved via Co-Design, where hardware
vendors and end users work together to ensure future platforms are not built to
achieve exascale performance at the expense of usability.

Application codes rarely perform and scale well when first parallelised: each doubling
of scale typically exposes a new issue. Ensuring the application will scale on HPC
systems - both today and in on the exascale systems of the future - requires stepwise
increasing of scale and validation of correctness, debugging, performance analysis and
tuning. Then, repeat for each significant code extension/optimisation.

Through performance analysis, programmers can locate so-called “hot spots”, i.e. code
which takes the most time, as this code should then be targeted for improvement.

12.1 Software preparations
Given the memory per core will most likely be substantially reduced when compared
to today’s HPC platforms, the practice of assigning one MPI task per physical core will
have to be substituted by using every 2nd or 4th core for each MPI task. This is known as
under-populating nodes. At first glance, this appears to suggest that we cannot fully
exploit the hardware, as we simply avoid using 50% or even 75% of the cores;
however, these spare cores can be employed via mix-mode codes, where each MPI
task runs threaded routines/loops to run on the remaining cores.

Essentially, authors must expose as many levels of parallelism as possible within their
code. Coding this can involve ensemble runs to coupling multiscale codes,
multiprocessing (with interprocess communication) to multithreading, vector
processing to accelerator-specific commands. This process can slow the code down on
present day platforms but will future-proof the code.

For instance, there are sets of serial algorithms, so-called Optimal Serial Algorithms,
which are often difficult or simply impossible to parallelise, as these algorithms employ

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 26 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

data from the previous steps or even the current step to make improvements at the
current step. Such dependencies can prevent concurrent execution of threads in the
program, for instance.

The inelegant yet empowering solution is to replace the optimal serial algorithm with a
sub-optimal serial algorithm which is, however, parallelisable. Whilst the serial
performance may be worse, the parallel performance will soon outperform the serial
version as the number of cores increases.

12.2 Improve serial code
Before considering how the code is parallelised, the first step is to consider the serial
sections of the code.

• Remove excess memory use in serial code.
• When using C++, find good balance of OOP and functional programming, as an

intensive use of OOP might introduce an unnecessary layer of complexity of the
scientific code.

• Ensure proper use standard libraries

12.3 Introduce vector processing

• Use appropriate compiler options
• Write ordered loops or leave this to compilers?
• Innermost loop must have independent iterations
• Loop length is either larger of multiple of vector length
• It is possible to set this at compiler time but not "probe and populate"
• No function calls, except maths libraries

o functions can be vectorised using OpenMP “declare simd” feature
• No complex control flow
• Determinable trip count (i.e. no while)

o the trip count must be known before entering the function at runtime
• Data access should be vector aligned, i.e. start at vector boundaries, and

preferably continuous
• http://www.archer.ac.uk/training/course-material/2017/11/sgl-node-ox/L04-

vectorisation.pdf
• Be aware of the ISA (SSE, AVX ..)

o it determines the vector length
o may target vectorised FMA instructions
o Do loop padding manually to get rid of peel/remainder loops
o Concerning vectorisation, we check compiler output or asm code to see

what was vectorised
o Use inline hints for functions or routines to help out the compiler to

inline
o Remember that YOU know your application better than the compiler

does.
o It all depends on how the data is aligned in RAM

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 27 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

• Hints with pragmas might be useful, also
• Force data alignment with compiler instructions (usually done automatically by

the compiler)

12.4 Improve MPI code

• MPI messages should be grouped to avoid multiple smaller messages
o e.g. use derived data types to avoid double buffering

• Avoid any storage or computation of O(nranks)
• Avoid all-to-all communication

o e.g. if(rank==0)then do work over all other ranks
• Remove unnecessary MPI_BARRIERs
• Do not over schedule cores when using threaded maths libraries

o typically control using OMP_NUM_THREADS even when libs do not use
OpenMP

• Use nonblocking collective communications.
o overlap computation and communications where possible

• Remove unnecessary communication synchronisation
o use MPI_TEST rather than MPI_WAIT
o avoid MPI_Probe

§ it most likely forces internal buffering to report the size of the
pending message

o Avoid ordered halo swapping,
§ e.g. don't delay y-direction sends until x-direction receives have

completed.
§ however, huge network bursts are also not ideal

• sometimes, ordered sends allow ordered receives.
• and ordered sends might allow to take advantage of the

network topology
o e.g. one can completely load the network with x-

direction halo swaps and so on
• Ensure load is balanced

o Avoided the receive-before-send scenario
§ one-sided communications can alleviate this

• Be aware that not all MPI libraries are equal
o e.g., there are many ways to implement collective communications.

• Respect the fact that the MPI standard prohibits concurrent read accesses on
the same buffer (even though there is no race condition)

o It may reduce the efficiency (or cause bugs)
• Tag the source
• Be aware: “blocking” has an alternative meaning in the MPI standard.

• This can easily lead to serialisation of huge chunks of the program.
• Interleave/overlap communication with computation where possible

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 28 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

12.5 Improve MPI parallelism

• Give each MPI task multiple sub-domains
o a subdomain is a distinct region of the computational domain and a

result of the domain decomposition algorithm.
o this allows light weight parallelism on a socket, keeps cache logically

together, etc.
• Enable multiple tiles per task.

o this might make tiles fit into cache but will spend time swapping
boundary information with yourself

• Use MPI Communicators, to map the communication to the target HPC
topology

o Collective operations are possible on a subset of processes.
o Explicit communicators are very useful to leverage MPI Shared Memory

• One-sided communication (or Remote Memory Access (RMA)), can be faster
than the message passing model

o May be beneficial when the load is hard to balance, since delays in the
receiving process are not necessarily propagating to the sender

12.6 Introduce OpenMP for threads on cores and OpenACC for GPUs.
A code which uses both MPI and OpenMP, or a code that uses both MPI and OpenACC,
is referred to as a mixed-mode code. This is done for two reasons: reduce memory
footprint or/and speed up application.

Not all MPI codes benefit from becoming mixed-mode codes. The benefits are as
follows.

• Hybrid applications have a reduced memory footprint (the shared memory
model allows threads to avoid halo regions or ghost cells)

• Eases load balance issue (usually the complexity of (adaptive) load balance
growths with the number of subdomains)

• Load balancing in threads is much easier
o thread-pool model, or
o tasks

• For applications which are MPI-bound due to load imbalance (long barriers in
MPI_Wait or MPI_Receive/Send), it might be advisable to reduce the number
of processes and increase the threads, while using OpenMP’s built in load
balancing features

Whilst the drawbacks are as follows:

• In case of MPI_THREAD_MULTIPLE, the application might lose portability
o forked threads are allowed to call any MPI routines

• Shared memory applications have their own problems
o e.g. false sharing, where a cache line is voided repeatedly

§ this is naturally avoided by MPI processes
• NUMA effects, e.g. where the data is placed in memory

o this can be resolved by careful task mapping.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 29 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

 Maybe also better to use OpenMP 4.5 target directives than OpenACC.

12.7 Improve OpenMP parallelism
An excellent Best Practice Guide for writing mixed-mode programs, i.e. MPI+OpenMP,
can be found via the Intertwine project pages: https://www.intertwine-
project.eu/mpi-plus-openmp-threads-resource-pack

• Investigate OpenMP tasks
• Try different schedules and/or tasks
• Avoid over-scheduling threads when calling threaded maths libraries.
• Minimise sequential code
• Replicating computation rarely works
• Ensure load balance over threads.

o Use different loop schedules or tasks
o May includes balancing communication in one thread with calculations

in the rest
• Avoid MPI data types as packing data is done on one thread: better to pack

data in parallel using threads, as MPI should not need to double pack when
data is contiguous

• Take care with NUMA effects my considering mapping, i.e. task placement
o e.g. run at least one MPI process per NUMA node

• Take care with process and thread binding: threads should run on the same
socket as their parent MPI process.

• Minimise the number of OpenMP barriers
• Use OpenMP directives to force SIMD operations

o OpenMP allows explicit vectorisation of functions called from vectorised
loops

12.8 General programming tips

• Be aware of the Load-Hit-Store problem (it does exist on multiple levels)
o prevents caching by the compiler and causes pipeline stalls.
o e.g., appears in MPI-IO (sometimes referred to as Read-Modify-Write

effect)
• IO can dominate

o consider MPI-IO or, better still, HDF5

12.9 Code Longevity
Whilst this section includes good practice for software engineers in general, the
following points are key when preparing for exascale systems, primarily because large
popular codes outlive the programmers who, in turn, typically outlive the HPC
platforms for which the software was written.

• follow a strict coding style guide
• use readable variables

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 30 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

• use internal documentation
• keep routines to less than one page
• copyright statements for every module/subroutine/function

o key for IP monitoring

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 31 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

13 Appendix B: Bull/Atos report on Task2.6 Work Done

13.1 Bull

Bull is part of the Atos group. As Europe’s only computer manufacturer through its Bull
brand, Atos operates in the ultra-high processing power market, to liberate its
customers’ ambitions. The CEPP (Centre for Excellence in Parallel Programming), a
branch of Bull, aims at hosting collaboration and Partnership. Most of the experts in
this centre have a PhD in a scientific domain; the others a PhD in Computer Science.
This choice is driven by the wish to create a bridge between scientists and
performance experts.

The key advantage is that, scientists of the same domain will immediately and deeply
understand each other. The quality of the exchanges will always be higher than the
one we may achieve with pure computing experts.

Obviously, the core of expertise of the whole team is optimisation, porting, and
knowledge about the platform and their evolution. Based on this core expertise, a lot
of high level services can be derived.

13.2 Background

Computational methods, based on human biology, are now reaching maturity in the
biomedical domain, rendering predictive models of health and disease increasingly
relevant to clinical practice by providing a personalised aspect to treatment. Computer
based modelling and simulation are well established in the physical sciences and
engineering, where the use of high performance computing (HPC) is now routine.

CompBioMed is a European Commission H2020 funded Centre of Excellence (CoE)
focused on the use and development of computational methods for biomedical
applications. Users within academia, industry and clinical environments are working to
train more people in the use of these tools and methods in this domain.

The objectives of CompBioMed are met by a cyclic collaboration of individual work
package (WP) teams: WP1 focuses on the project management, WP2 consists in
research activities, WP3 and WP4 relates to networking activities and finally WP5 and
WP6 handle service activities.

In this report, the work performed by WP2 on “developing plans for and implementing
the upscaling of CompBioMed production application for future HPC platforms,
including those heading toward the Exascale (Task 2.6)”, are presented. The goal is to
port, profile, optimise and report on the performance results of a set of applications
provided by the CompBioMed community.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 32 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

List of core partners of CompBioMed: University college London (UCL), University of Amsterdam (UVA),
University of Edinburgh, SURFsara, Barcelona Supercomputing Centre (BSC), University of Oxford,
University of Geneva, University of Sheffield, CBK Sci Con Ltd, Universtat Pompeu Fabra, LifeTec Group,
Acellera, Evotec, Bull, Janssen.

List of associate partners of CompBioMed: Avicenna Alliance, Birmingham City University, Bruel
University London, GSK, LRZ, Rutgers, DNAnexus, London Science Museum, University of Leeds, VHP
Institute, Zayed University, HITS, Hartree Centre, University of Southampton, KINDI, University Catolica
de Murcia, Aix Marseille University, e-Cardiology, Oxford NHR, Alcesflight, Cyfronet, Electric Ant Lab BV,
Norton Straw, ITMO University, Pozlab, Qatar Rototic Surgery Centre, Microsoft, Dassault Systemes,
Lightox, InSilicoTrials, Diamond Light Source, EnsembleMD, ANSYS, Medtronic, Université Libre de
Bruxelles, PIE Medical Imaging, Astra Zeneca.

13.3 Objectives of this deliverable

The aim of this document is to report on the activities performed on WP2 Task 2.6. The
goal is to co-work with CompBioMed core partners on the selected HPC codes and
report on the implementations of CompBioMed applications on emerging HPC
architectures and porting to new and maturing architectures. The first step is to port
the applications on Bull HPC platform, run scalability tests, then perform a profiling of
the applications to target the most time-consuming function and loops for
optimisations. Finally, the deliverable consists of this report and suggestions for
improving the performances of the applications.

13.4 Work performed in this deliverable

The work performed in this deliverable consisted of Task 2.6 in WP2 of the
CompBioMed description of action. The latter includes the porting, profiling and
optimisation of the selected HPC applications on emerging HPC platforms.

Among the high-performance computing codes which lie at the heart of the
CompBioMed CoE, the HemoCell code was chosen by Bull’s team to be investigated.

HemoCell is developed by the University of Amsterdam (UVA) and is a high-
performance code which simulates the transport properties of dense cellular
suspensions such as blood (Figure 2Error! Reference source not found.). The blood
plasma is modelled by a continuous fluid simulated with an open-source Lattice
Boltzmann Method (LBM) solver. On the other hand, the cells are modelled by discrete
element method membranes. Both models are coupled using an immersed boundary
implementation.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 33 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

Figure 2 Dense flow (left) and white blood cell extension (right)

Starting from the portable implementation of HemoCell v1.4, the team members of
Task 2.6 took the application and performed scaling test and optimisations on the Intel
Skylake compute nodes.

The profiling of the application led to targeting the hotspots of the application, where
the optimisations need to be directed.

In addition to the optimisation suggestions of the application, this report aims at
determining the best practices for the implementation of numerical methods on
emerging HPC architectures.

13.5 Organisation of this report

In the following chapters, the main results of the work effort are summarised. A brief
description the HPC platform which hosted the computations, is carried out together
with the dependencies of the application HemoCell. The scalability, profiling results are
then presented. The following chapter is dedicated to the optimisation effort. The last
chapter consists of suggestions of alternatives to Palabos, the LBM library which lies at
the heart of the HemoCell code.

 Setup (hardware configuration and Simulation parameters)

The HemoCell code (V1.4) was retrieved from the HemoCell webpage
(www.hemocell.eu) and was setup from source. With respect to the compiling and
running requirements, the following dependencies versions in Table 1 were used.

Dependency Version

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 34 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

Intel C/C++ Compiler 18.0.5
Intel MPI 2018 Update 1
Cmake 3.10.0
HDF5 1.10.2
Palabos 2.0
GNU Patch 2.7.1
Table 1 HemoCell dependencies
The HemoCell code was installed on Bull’s HPC medium scale platform. It is composed
of several compute nodes of type Intel Skylake (16, 18 and 20 cores per socket and 2
sockets per node) with EDR interconnect. Lustre and GPFS parallel filesystems are
available (Table 2).

Processor type (number) Intel Skylake (Xeon Gold

6148)
Intel Skylake (Xeon Gold
6130)

Number of cores per socket 20 16
Number of threads per
socket

40 32

Number of sockets per node 2 2
Base frequency 2.4 GHz 2.1 GHz
Cache 28 160 KB 22 528 KB
Bus speed 192 GB DDR4 2667 MT/s

DR
192 GB DDR4 2667 MT/s
DR

Thermal Design Power (TDP) 105 W 125 W
Instruction Set Extensions Intel SSE4.2, AVX, AVX2,

AVX512
Intel SSE4.2, AVX, AVX2,
AVX512

Number of AVX-512 FMA
units

2 2

Table 2 Main characteristics of the Intel processor used for Task 2.6

The HemoCell code provides a configuration file which sets up the parameters for the
numerical simulation. One may find the description of the shape of the cells,
<ibm>
 <shape> 1 </shape> <!-- shape: Sphere:[0], RBC from sphere:[1], Cell(defined):[2], RBC from file [3] RBC
from Octahedron [4] Sphere from Octahedron [5] -->
 <radius> 3.91e-6 </radius> <!-- Radius of the particle in [m] (dx) [3.3e-6, 3.91e-6, XX and 4.284 for
shapes [0,1,2,3] respectively -->
 <stepMaterialEvery> 20 </stepMaterialEvery> <!-- Update particle material model after this many fluid
time steps. -->
 <stepParticleEvery> 5 </stepParticleEvery> <!-- Update particles position after this many fluid time
steps. -->
</ibm>

And more details about the domain geometry and the number of cells of reference
direction.

<domain>
 <geometry> tube.stl </geometry>

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 35 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

 <fluidEnvelope> 2 </fluidEnvelope>
 <rhoP> 1025 </rhoP> <!--Density of the surrounding fluid, Physical units [kg/m^3]-->
 <nuP> 1.1e-6 </nuP> <!-- Dynamic viscosity of blood plasma, physical units [m^2/s]-->
 <dx> 5e-7 </dx> <!--Physical length of 1 Lattice Unit -->
 <dt> 1e-7 </dt> <!-- Time step for the LBM system. A negative value will set Tau=1 and calc. the
corresponding time-step. -->
 <refDir> 1 </refDir> <!-- Used for resloution setting and Re calculation as well -->
 <refDirN> 64 </refDirN> <!-- Number of numerical cell in the reference direction -->
 <blockSize> -1 </blockSize>
 <kBT>4.100531391e-21</kBT> <!-- in SI, m2 kg s-2 (or J) for T=300 -->
 <Re> 10 </Re> <!--Reynolds number-->
 <particleEnvelope> 25 </particleEnvelope>
 <kRep> 2e-22 </kRep> <!-- Repulsion Constant -->
 <RepCutoff> 0.7 </RepCutoff> <!-- RepulsionCutoff -->
</domain>

 Scalability Tests

The scalability abilities of the HemoCell code are investigated in this chapter. First, the
strong scalability is presented. The experiments were performed on Intel Skylake
nodes (Intel Xeon 6130, see Table 2).

Figure 3 HemoCell Strong scaling. Red line denotes the ideal scaling curve.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 36 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

Figure 4 HemoCell strong scaling efficiency. The horizontal red line denotes the ideal cluster efficiency.

The efficiency drops below 70% within one node which can be improved. This strongly
suggests that the ratio compute per core is decreasing rapidly and the synchronisation
time takes an important part in the execution time. In the following, experiments on
the weak scalability are performed in the same settings.

Figure 5 HemoCell weak scaling efficiency

Figure 5 shows the overall weak scaling performance of the test case which was
provided on demand by UVA. The test cases were generated by doubling the size of
the computational domain and filling it with blood cells such that the density of blood
cells remains constant. The efficiency is settling around 70% for 512 cores.

To further understand where the scaling is dampened, the weak scaling of each
function in the main computational loop is investigated in Figure 6.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 37 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

Figure 6 HemoCell weak scaling efficiency of inner functions

The LBM solver’s efficiency is dropping rapidly. To improve the weak scaling behaviour
of the code, the collideAndStream function is either not used correctly (e.g. with badly
balanced load) or needs be replaced by a more efficient, possibly single-instruction-
multiple-data (SIMD) accelerated function.

Remark: The fact that a saturation of the efficiency at around 70% is observed, might
suggest that we should not evaluate the scaling performance against the runtime with
1 node. In other words, the code might not have been designed to be run at very low
core counts, thus we should maybe move the base to the right (e.g. 16 cores = 100%
efficiency)

The weak scaling results are quite satisfying compared to the strong scaling results
although weak scaling tends to work better as more workload tend to keep the
processors busy.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 38 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

 Profiling

 MPI time analysis

Figure 7 HemoCell application ratio – Intel profiling tool ITAC.

Figure 7 represents the ratio of all MPI calls to the rest of the code in the application.
This information is collected by Intel Trace Analyzer and Collector (ITAC) formerly
known as Vampirtrace. This tool is developed for analysing MPI communication which
includes the tracing and analysing of MPI functions calls and messages being
transferred.

Figure 7 shows that the total MPI time is quite large. More importantly, Figure 8 shows
that half of this time is spent in MPI wait and MPI barrier which indicates
synchronisation problems and wait at barriers for I/O calls.

The list of the most active MPI functions from all MPI calls in the application are
presented above in Figure 8.

Figure 9 HemoCell late sender performance issue

Figure 9 shows the late sender problem due to imbalance in the MPI workload. Unlike
the late receiver problem which can be mitigated with non-blocking communications,

Figure 8 HemoCell top MPI functions

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 39 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

the late sender issue can be mitigated by putting some effort in a better workload
between MPI processes.

Figure 10 HemoCell global MPI communication time

Figure 10 shows the rank-to-rank communication matrix. This pattern underlines the
unbalanced workload and specifically the all-to-all communication which becomes
limiting when the number of cores is high enough.

Figure 11 indicates the amount of MPI wait time versus the number of cells per rank at
a fixed timestep which impacts the workload. MPI wait time is the highest for ranks
with smallest number of cells e.g. workload.

 Hotspot functions/loops
A global analysis of the HemoCell application shows that it divides mainly in calls to the
LBM solver called Palabos and I/O using the HDF5 library for storing intermediate
snapshots at regular timesteps and checkpointing (see Figure 12).

Figure 11 HemoCell MPI wait time vs workload at a fixed time step of the simulation

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 40 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

Figure 12 HemoCell profile chart

At the compilation level, the flags “-O3 -xHost -qopt-zmm-usage=high” enables
optimisations for code speed quite aggressively. The compiler performs some basic
loop optimisations (transformations such as fusion, Block-Unroll-and-Jam and
collapsing IF statements), inlining of intrinsic, intra-file interprocedural optimisation
and most common compiler optimisation technologies. The “-xHost -qopt-zmm-
usage=high” allows to target the highest ISA, e.g. AVX-512, which enables vectorisation
when possible.

Figure 13 HemoCell Memory stalls and floating-Point Instruction usage – Intel Application
Performance Snapshot
Figure 13 shows that, despite the high capacity of the instruction set of the processor,
the compiler could not retrieve a good vectorisation of the code leading to an almost
fully scalar floating-point instruction. For instance, the loop at line 95 in the Palabos
solver, interpolationCoefficientsPhi2() which is the a hotspot loop (see Figure 14), the
compiler could not vectorise the loop due to multiple IF statements with an exit
(Figure 15). Similarly, the loop at 543 in the blockLattice3D.hh,
blockwisebulkCollideAndStream(), the compiler is unable as well to vectorise due to
the impossibility to compute in advance the loop count (Figure 16).

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 41 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

Figure 14 HemoCell BottomUp hotspot loops – Intel VTune

Figure 15 Palabos solver, interpolationCoefficientsPhi loop – Intel VTune

Figure 16 Palabos solver, blockwiseBulkCollideAndStream loop -- Intel VTune

13.6 Optimisation Tracks

 Attempt to utilise full potential of x86 instruction set
Early in the hotspot analysis, the compiler was only capable of vectorizing small chunks
of the code. About 99% of the executable and with it the computationally extensive
regions were composed out of serial instructions. As the computationally most

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 42 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

expensive region, the focus is set on the blockwiseBulkCollideAndStream() function in
blockLattice3D.hh.

It is responsible of advancing the fluid according to the Lattice Boltzmann Method. The
rather complex nature of the 6 nested for loops made it necessary to traverse the call
stack down to where the actual computations are performed. In the following, the
subroutines addNaiveForce() and addGuoForce(), which are implemented in
externalForceTemplateeD.h are investigated.

Within these functions, the force with respect to each neighbouring cell is computed.
The computations differ slightly, depending for instance on the distance of the centre
points of the respective cells. To enable vectorisation or fused multiply-add (FMA)
operations, we need to unify these computations and even more importantly, the data
on the random-access memory (RAM) must be aligned. In principle, we archived this
by introducing an additional buffer which stored precomputed results which had to
computed individually and once this was done, vector operations were performed on
the buffer.

static T A[27] = {…} __attribute__((aligned(64)));
static T B[27] = {…} __attribute__((aligned(64)));
for(unsigned int i = 0; i < 9; ++i){
#ifdef _USE_BLAS
 C[i] = blas_ddot(3, &(A[i*3]), 1, &(B[i*3]), 1);
#else
 C[i] = A[I*3] * B[i*3] + A[i*3 + 1] * B[i*3 +1] + A[i*3+2] * B[i*3+2] ;
#endif
}
//some more computations to get to the final result for array f[]

Throughout multiple test, the structure was altered to obtain more performance. For
instance, instated of statically allocated buffers, a memory bool was used. Also, as
shown in the sample code, BLAS level one routines were put in place.
However, this technique did not lead to the desired decrease in execution time.
Unfortunately, the way the 6 nested loops operate, results in rather short loops. Thus,
the vector length is very limited. The benefits of using SIMD instructions were at best
about even with the effort to prepare and align the data at each iteration. Additionally,
the BLAS routines couldn’t show their full potential, due to the short vector length.
Eventually, the idea to vectorise computations within a loop iteration had to be
abandoned.

However, one could argue vectorisation should be feasible across loop iterations, thus
inlining all function calls and vectorizing the loop itself.

13.7 Loop vectorisation

To archive vectorisation, the function which were called within the loop were declared
SIMD.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 43 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

#pragma omp declare simd [list]
Next, vectorisation is enforced on the loop, while disrespecting hits from the compiler
whether it is efficient or not. The data access pattern can be found in the overloaded
operator in
${Palabos_src_dir}/core/implicitGrid3D.h .
It depends on the 3 inner loop variables and is linearised as such:
[z + nZ*(y + nY*x)].
Where x, y and z are the loop iteration counters of the three inner loops, respectively.
nZ and nY are the array bounds in their respective dimensions.
Note, that the operator (), which is decaled and defined in implicitGrid3D.h is
shadowed by the definition given in
${Palabos_src_dir}/atomicBlock/blockLattice3D.hh.
The access pattern, however, remains unchanged.
Compiler messages show, that the force calculation in the collision step was
successfully inlined into the loop.

Unfortunately, the way the data is structured in RAM is not allowing for an efficient
vectorisation. Each cell has a size of 192 Bytes and they are consecutively placed in
storage. Thus, from one loop iteration to the next, 192 Bytes must be traversed. This is
too much to loaded efficiently into vector registers. During the compilation the
compiler is giving the following output:
remark #15415: vectorization support: non-unit strided load was generated for the variable <grid-
>parent->rawData->data[innerZ+?*(innerY+?*innerX)][4]>, stride is 24 [
/home_nfs_robin_ib/bkarlshoeferp/hemocell_perf_test/hemocell_vec/hemocell-
1.4/palabos/src/core/array.h(66,16)]

The stride being 24 is counted in elements of double precision. Consequently, there is:
24 * sizeof(double) = 192

During runtime, this jump is observed in Figure 17.

Figure 17 Starting address for adjacent cells. The storage location is given in HEX, and the
displacement is indeed 192 Bytes (e.g. the first two lines yield 0x7f6fd9d10968 – 0x7f6fd9d10a28 =
0xC0 = 192).
Thus, two corresponding force entries, e.g. Cell[0]->force[0] and Cell[1]->force[0], are
192 Bytes apart (Figure 18). That this is too much for AVX512. Vectorisation which
reaches across loops in the innermost loop nest is basically ruled out.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 44 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

Essentially, there is an Array of Structs (AoS) where the Array is “rawData” and the
Struct is “Cell<…>”. Thus, the stride becomes large and consequently vectorisation
unbeneficial.

Figure 18 Orange highlight: section, which is loaded into AVX register.

A Struct of Arrays (SoA) would be better:

Figure 19 Struct of Arrays, better memory localisation for AVX register

The orange-highlighted section in Figure 19 represents the memory which is loaded
into the vector registers at one point in the computation. Obviously, a SoA is superior
to an AoS.

Restructuring the data layout would be expensive. The Layout of a cell is descripted in:
${Palabos_src_dir}/latticeBoltzmann/nearestNeighborLattices3D.
The description is rather low level, essentially stating the offset from the beginning of
the object to the requested variable.
struct Force3dDescriptor {
 static const int numScalars = 3;
 static const int numSpecies = 1;
 static const int forceBeginsAt = 0;
 static const int sizeOfForce = 3;
};

In practice, this looks like the following (externalForceTemplates3D.h):
Array<T,Descriptor<T>::d> externalScalars = … ;

ImplicitGrid<T,Descriptor>
….
Parent.rawData

192 Bytes

force [0 ... 18]

192 Bytes

force [0 ...18]

192 Bytes

force [0 ... 18]

Cell<T,Descriptor>

Cell [0 ... n] Cell [0 ... n]

Cell [0 ... n]

force 0 force 1 force 2

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 45 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

T* force = (T*)externalScalars + forceBeginsAt;
Modifying the actual address, where it is pointed to, makes it hard to track in which
parts of the program might break if the code is modified from AoS to SoA access.
Additionally, other functions might benefit from the fact that data is clustered by cell,
not by orientation in space.

So far, we haven’t even talked about data dependencies. Clearly, they pose an issue, as
can be seen in the Figure 20.

Figure 20: Location of cell with ID 210 in the density field at the same point in time in 2 identical runs.
The value of the density is different.
Also, slight differences can be observed while investigating the force vector field in
Figure 21 and Figure 22.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 46 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

Figure 21 Difference in the force field becomes evident between two identical runs
However this might not be inherited by the forced vectorisation, as it is discussed in
the next section.

13.8 Reproducibility
Another subject is reproducibility of results from simulations. Runs with identical input
data do not lead to identical output files. The force vector field as well as the scalar
field of density do vary potentially up to 10% as shown in Figure 22.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 47 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

Figure 22 Difference in the force field becomes evident between two identical runs, once the values
are displayed (left: [9.17e-4, -9.4e-5, 3.57e-4] and right: [1.0e-3, -2.35e-4, 3.96e-4].

13.9 Single Node Optimisation

Upon realising that the code is parallelised with MPI only, the idea of implementing
shared memory parallelism within Palabos was considered using OpenMP. The 6-times
nested loop, which is mentioned above, was targeted, again. However, the granularity
of a single task was too small within the 3 inner nests of the loop. The benefits of
calculating the loop in parallel were outweighed by the overhead to fork the threads
pool. Going to the outer levels of the loop, loop and data dependencies prevented to
go further.

Eventually, without refactoring the code of Palabos, light weight parallelism is not
beneficial.

13.10 Possible alternatives to Palabos

As a major issue for the poor scalability of HemoCell, we had to investigate the Palabos
library. Palabos manages the advancement in time via the Lattice Boltzmann Method
and does the initial domain decomposition and voxelisation.

As described above, the rather poor scaling performance of the HemoCell code on a
compute cluster is due to the uneven spread of the workload amongst the MPI tasks
(processes). So far, the load balancing appears to be static. Thus, it is not flexible over

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 48 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

time and does not react or depend on the actual amount of blood cells in one
multiblock.

We recognise the fact that HemoCell will soon incorporate ParMetis to do load
balancing. However, it might be easier and more efficient to outsource the task to the
LBM solver itself. Unfortunately, Palabos does not provide this feature.

In addition to the lack of a load balancing routine, Palabos is relying mostly on MPMD
programming (MPI) to do the parallelism. The lack of the shared memory programming
model (e.g. OpenMP) lays even more weight on very accurate load balancing since
imbalances can usually be handled more easily in one continuous block of memory.

Lastly, during many compilations of Palabos, we did detect only a very small
percentage of SIMD capable code. This makes us believe, the Palabos might not be the
optimal choice, especially since exist other, highly optimised LBM solvers. In the
following, we would like to suggest a very brief overview of possible alternatives to
Palabos.

 OpenLB
OpenLB is, as the name suggests, open source and hybrid (MPI + OpenMP). The code
has implemented its own load balancing routine. Moving from Palabos might be
facilitated by the fact that it supports “.stl“ geometries.

 WaLBerla
Also, a hybrid code (OpenMP + MPI), which is written in C++. In contrast to Palabos it
does support multiple LBM collision/streaming models. It has a strong remark on
GPGPU usage, which suggests, that the code uses SIMD instructions. The domain
decomposition is performed in parallel and the code is available (open source). It
might be worth a look since it already ran on SuperMUC with 10^18 cells.

13.11 Conclusion

In this report, a detailed profiling and scalability runs of the HemoCell application have
been presented in addition to a set of optimisation tracks and their corresponding
results.

The main outcome resides in the fact that the HemoCell code consists in an MPI
implementation of the Lattice Boltzmann Method of Palabos and intensive I/O through
the HDF5 library. The HPC code suffers from a lack of a load balancing method which
causes the application to perform poorly. Fortunately, the upcoming version of
HemoCell shall include a load balancing technique (Parmetis library). It was noticed
that the Palabos library could not fully benefit from the vectorisation possibilities of
the compiler and the processor architecture despite many intrusive and non-intrusive
optimisations.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 49 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

As a conclusion, a better memory management or data structure can lead to a higher
vectorisation. One may suggest an LBM implementation as well which may benefit
from an OpenMP parallelisation. The latter shall take advantage from future multi-
threaded architectures.

 Meetings

Date Topic People
13 Sep 2018 HemoCell: run and

optimisation repots
V. Azizi, E. Raffin, O.
Hamitou, P. Karlshofer

26 Sep 2018 Large case study V. Azizi, O. Hamitou, P.
Karlshofer

8 Nov 2018 Discussion on final output V. Azizi, O. Hamitou, P.
Karlshofer, E. Raffin

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 50 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

14 Appendix C: Report of UCL’s exascaling BAC and HemeLB.
This Appendix is a copy of relevant Sections from the ComPat deliverable “D3.3: Report
on performance measurements and prediction of HPMC Application”. This is a public
document; however, at the time of writing, the report is currently unavailable. Thus,
for the sake of completeness, the relevant sections are included here, namely Section
2.1 and the relevant part of the general Conclusions. Finally, references have been
inlined for clarity.

Largest scale performance tests
In this section, we detail the performance studies carried out on ComPat applications
on the largest resources. These were typically tested on resources larger than that
available under the Experimental Execution Environment. A weak scaling and a strong
scaling application are considered, and some exascale predictions are formulated.

Binding Affinity Calculator (replica-based representative)
For multiscale applications following the replica computing pattern, it makes more
sense to think in terms not of a single simulation, but rather of simulation campaigns.
It is the orchestration of these campaigns that is key here, and therefore the choice
and performance of the middleware is highly important, particularly as regards the
efficient use of putative exascale resources.

In the first year of this project, the BAC was on the fast track and, with the giant, full-
SuperMUC run, we demonstrated the feasibility of such enormous RC runs. In the
second year, BAC was the application with which we developed and built the RC
pattern, and we demonstrated that with RC we can aid in running BAC on non-trivial
distributed environments. Finally, this year we want to demonstrate how BAC behaves
on a single resource, with systematic studies of weak scaling. By adding up these three
parts, we get the full picture whereby all ingredients are ready to go into production,
using RC, the pilot jobs, and so on.

Our selected multiscale application demonstrating replica computing is the High
Throughput Binding Affinity Calculator (HTBAC), which builds upon the RADICAL
Cybertools (a middleware component of the COMPAT stack), as the framework
solution to support the coordination of the required scale of computations, allowing
the exploitation of thousands of cores at a time.

To determine the performance of HTBAC, particularly as regards the extension to
extreme parallelism, a number of performance studies were carried out. The main
resource used was NCSA Blue Waters, with additional runs on LRZ SuperMUC and
ORNL Titan.

 Scalability and resource usage
We explored the performance of HTBAC on NCSA Blue Waters with two different
protocols:

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 51 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

1. ESMACS (Enhanced sampling of molecular dynamics with approximation of
continuum solvent), consisting of 25 replicas, i.e. 25 pipelines

2. TIES (Thermodynamic integration with enhanced sampling) consisting of 13
lambda windows and 5 replicas, i.e. 65 pipelines

Both protocols run for a total of 6 ns simulation durations. ESMACS produces 3.5
GB/system (24 MB/ns) while TIES produces 10 GB/system (24 MB/ns). Each simulation
step in TIES and ESMACS requires 32 cores. Protocols run approximately 10-12 hours,
depending on the physical system and the number of timesteps provided by the user.

When considering an application following the replica computing (RC) pattern, the
most pertinent performance property is that of weak scaling. This is also the most
scientifically relevant property, as it demonstrates the ability of HTBAC to solve large
number of drug candidates in essentially the same amount of time (as the resources
increase).

To this end, in our first study we investigated the weak scaling behaviour when
screening sixteen drug candidates concurrently using thousands of multi-stage
pipelines on more than 32,000 cores on NCSA Blue Waters (we observed similar scaling
on other platforms such as ORNL Titan for different protocols).

Fig. 1: Weak scaling properties of HTBAC. We investigate the weak scaling of HTBAC as
the ratio of the number of protocol instances to resources is kept constant. Overheads
of HTBAC framework (right), and RCT overhead (left) and total execution time TTX (left)
for experimental configurations investigating the weak scaling of TIES. We ran two
trials for each protocol instance configuration. Error bars in TTX in 2 and 8-protocol
runs are insignificant.

A detailed representation of the weak scaling performance of HTBAC for the TIES
protocol is presented in Fig. 1, demonstrating almost perfect scaling to hundreds of
concurrent multi-stage pipelines.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 52 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

In our second set of studies [“Concurrent and Adaptive Extreme Scale Binding Free
Energy Calculations” Dakka et al., 2018 (https://arxiv.org/abs/1801.01174)] we carried
out a number of experiments on Blue Waters using both the ESMACS and TIES
protocols. We present here the results of the weak scaling experiments:

In Fig. 2 we show (a) the weak scaling of HTBAC with the TIES protocol, (b) with the
ESMACS protocol, and (c) with instances of both TIES and ESMACS protocols.

Fig. 2. Weak scaling of HTBAC. The ratio number of protocol instances to resources is
constant. Task Execution Time with and HTBAC, EnTK+RP, aprun overheads with (a)
TIES (Experiment 1), (b) ESMACS (Experiment 2), and (c) TIES and ESMACS (Experiment
3).

For all weak scaling experiments (1–3) we used physical systems from the BRD4-GSK
library (16 ligands made available for this work by GlaxoSmithKline) with the same
number of atoms and similar chemical properties. The uniformity of these physical
systems ensures a consistent workload with insignificant variability when
characterizing their performance under different conditions.

In all weak scaling experiments (Fig. 1 and 2) we observed minimal variation in the task
duration as the number of protocol instances increases. We conclude that HTBAC

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 53 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

shows near-ideal weak scaling behaviour under the conditions tested. The overhead
for the TIES results includes the adaptive sampling algorithms. The HTBAC overhead
depends mostly on the number of protocol instances that need to be generated for an
application. This overhead shows a super linear increase as we grow the number of
protocol instances, but the duration of the overhead is negligible when compared to
Total Task Execution Time.

This detailed performance data supplements and reinforces our earlier experiences of
the excellent weak scaling of the BAC on large supercomputing platforms such as LRZ
SuperMUC in 2016, in which both phases (a total of 250,000 cores) were used
simultaneously for 37 hours, testing 50 candidate drugs and generating around 5
terabytes of data1.

 Node failure rate
The probability of node failures is likely to increase as supercomputers are constructed
with ever larger numbers of nodes, and might therefore become significant on some
exascale platforms. However, on the resources used for our performance
measurements, we observed typically very few node failures, even when under high
stress. During a campaign of 64 proteins, 25 replicas each, and 2-4 nodes per replica
(executed on Blue Waters), only 2 node failures occurred (even though this campaign
was executed twice). It should be noted that these two campaigns were executed
shortly after Blue Waters came back online after a shutdown period, so the system
may have been in a more stable state than after a long period of continuous usage.
Nevertheless, there is little evidence on present systems (even when using hundreds of
thousands of cores) that node failures will significantly impact the scalability of HTBAC
in the short to medium term, although unforeseen issues might well arise on the e.g.
billions of cores a full exascale machine may contain. This remains an active research
topic, and in principle we understand, in the context of RC, how to deal with potential
node failure in an automatic way. However, given this experiment we have not yet
implemented automatic detection and recovery of node failures into the RC pattern.
We intend, as larger machines come available, to continue running such huge
campaigns to understand the actual node failures, and when needed, to realise fault
tolerance and recovery mechanisms into the RC pattern.

 Conclusions and prediction for Exascale
Extrapolating from the promising weak scaling performance analysis presented above,
we might expect good scaling of replica based applications at even greater node
counts. Our studies have not yet shown any limitations that might preclude efficient
use of exascale services. Differences in architecture and hardware may, naturally,
affect this, and as the COMPAT stack matures, we will obtain more performance data
to further clarify the viability of such applications on exascale machines.
As we demonstrated in deliverable D2.2 and D3.2, replica computing can also very well
be executed in a distributed mode, running replicas across a range of supercomputers,

1http://www.gauss-centre.eu/SharedDocs/Pressemitteilungen/GAUSS-CENTRE/EN/2016-
03_SuperMUC_Pers_Med.html?nn=1290050

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 54 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

with the multiscale computing patterns algorithms and software facilitating the
detailed deployment. We continue to explore these capabilities, but this will require a
production ready distributed supercomputing environment, such as the ComPat EEE.
The European Supercomputing landscape would, in our opinion, very much benefit
from such an environment, e.g. operated under the governance of PRACE. We have
demonstrated that our middleware (QCG) is production-ready, and that our RC pattern
is capable of exploiting such distributed HPC resources in a very efficient way. In
combination with the weak scaling performance as reported in this deliverable, this
would even allow us to reach the Exascale on a RC application by aggregating the
power of sub-exascale machines. To conclude, ComPat has demonstrated that this is a
viable option.

 HemeLB (monolithic representative)
The Experimental Execution Environment did not have sufficiently large resources for
determining large scale monolithic runs. As we have argued in Deliverables D2.1 and
D3.1, and demonstrated in D2.2 and D3.2, the primary models in Extreme Scaling
patterns are large scale monolithic codes. We have already demonstrated how the
multiscale computing patterns algorithms and software can efficiently deploy Extreme
Scaling applications on the EEE. The next step is to study in detail if and how the
primary models themselves can scale to the largest HPC machines currently available
to us.
We therefore used ARCHER (up to 96k cores) and Blue Waters (up to 300k cores) for
our largest runs. The ARCHER supercomputer in Edinburgh, UK is a Cray XC30, with
dual 12-core Intel Xeon E5-2697v2 (Ivy Bridge) 2.7 GHz processors joined by two QPI
links, connected via a proprietary Cray Aries interconnect in a dragonfly topology. The
Blue Waters supercomputer in Illinois is a Cray XE6/XK7 system consisting of more
than 22,500 XE6 compute nodes (each containing two AMD Interlagos processors, with
8 floating point cores each).

 Scalability and resource usage
Unlike the Replica Computing case explored earlier in this report, the most
scientifically relevant scaling for such a monolithic application was determined to be
strong scaling. While weak scaling would allow (physically) larger systems to be
simulated in the same time (on more cores), the characteristic time scales of processes
of interest typically scale as a power (greater than or equal to 1) of the system size,
and thus aiming for constant wall clock time would not yield scientifically useful
results.

Instead, we focussed on how a system of fixed size might be simulated faster through
the use of more cores (on the same supercomputer). Our test system was the circle of
Willis, an important vascular system located at the centre of the brain (and a region in
which many aneurysms form). Such a system can already be simulated using (coarser)
finite element methods, but we use it here as a useful geometry for benchmarking. On
EPCC ARCHER, we benchmarked with a 15 micrometre resolution geometry (777
million fluid sites), and on NCSA Blue Waters we used a 7 micrometre resolution
geometry (5.5 billion fluid sites). Note that in both cases the geometries are highly

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 55 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

sparse (<< 1% fluid fraction), posing challenges for load decomposition as compared
with a dense geometry.

The results of the performance measurements on ARCHER are shown in Figs. 3 and 4
[Patronis, A., Richardson, R. A., Schmieschek, S., Wylie, B. J., Nash, R. W., & Coveney, P.
V. (2018). Modelling Patient-Specific Magnetic Drug Targeting within the Intracranial
Vasculature. Frontiers in physiology, 9, 331.]. The profiling of the code was carried out
using the parallel performance tool, Scalasca (http://scalasca.org/).

Fig. 3: Strong scaling of HemeLB up to 96k cores on EPCC ARCHER, showing both
initialisation and simulate phases.

Fig. 4: Wall clock time and efficiency metric for strong scaling of HemeLB on EPCC
ARCHER, up to 96k cores.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 56 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

In Fig. 3 we see the speed-up of HemeLB from 3000 cores to 96000 cores, while Fig. 4
shows the corresponding measured wall-clock time, and measure of parallel efficiency.

There is a negligible amount of MPI collective communication, and the amount of non-
blocking point-to-point communication for data exchange decreases in proportion to
computation time. Therefore, communication efficiency remains above 0.89. Load
balance, however, starts at 0.86 and progressively deteriorates to 0.76, such that the
overall parallel efficiency degrades to 0.72 once at 96,000 cores.

In our second study, we performed benchmarking of HemeLB on NCSA Blue Waters up
to 300000 cores, using a higher resolution system (with approximately double the
number of fluid sites). At such a high number of cores and low fluid site count per core
(approximately 5000 sites per core) it was more challenging to avoid overheads from
the use of a profiling tool such as Scalasca, so we focussed only on wall clock time per
run. The resultant performance data is given in the following table:

cores # nodes wall clock time (simulate phase) [s]

16000 1000 3490.868

32000 2000 1799.434

64000 4000 0942.717

128000 8000 0494.497

256000 16000 0376.673

300000 32000 0557.471

Table 1: Data for strong scaling study on Blue Waters plotted in Fig. 5.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 57 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

Fig. 5: Strong scaling of memory-optimized HemeLB on Blue Waters, up to 256k cores,
for a 5.5 billion fluid site circle of Willis geometry.

In Fig. 5, we see the results of the strong scaling on of HemeLB on Blue Waters, shown
here up to 256k cores. The performance degradation thereafter is attributed to
significant load imbalances (due to the difficulty of minimising the communication
surface in such a complex, sparse geometry) and the very low computational load per
core (5000 sites on average).

It was unfortunately not possible to obtain energy usage information from ARCHER or
Blue Waters (they do not make this information available to users).
 Node failure rate
Node failure rate on BW was low, even at 300k cores, although on exascale machines
this is expected to be a significant issue - monolithic applications will be particularly
vulnerable to this. Similarly, on ARCHER we found a negligible node failure rate under
normal conditions - however: when running multiple OOM jobs over the whole
system, subsequent jobs appeared to fail on the released nodes.
 Conclusions and prediction for Exascale
Our monolithic test application used in the above performance analysis shows very
good strong scaling for the given system sizes. However, due to the locality of
interactions in the lattice-Boltzmann formulation (and hence locality of information
transfer) the challenges of efficiently exploiting extreme parallelism will likely lie not so
much in the simulation phase - a larger or higher resolution input file may always be
used - but rather in the creation and initialisation of such enormous input files, and the
physical time scales one may reach (given that processor speed increases little). The
focus here on strong scaling is precisely due to this practical need for parallelism to
increase physical time evolution in the system (rather than merely allow physically
larger or higher resolution systems) but a more intelligent performance model must

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 58 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

take into account the trade-off between the spatial and temporal scales, and the
combinations allowed at different core counts.

To this end, such a performance model has been developed for lattice-Boltzmann
simulations (soon to be published by [A. G. Hoekstra, B. Chopard, D. Coster, S.
Portegies Zwart, P. V. Coveney," Multiscale Computing for Science and Engineering in
the Era of Exascale Performance", Phil Trans R Soc A, In Press (2018), DOI:
10.1098/rsta.2018.0144]) the results of which are shown in Fig. 6.

Fig. 6: Reachable spatial and temporal scales for a lattice-Boltzmann simulation at 10
micrometre resolution, given a fixed 1.5 days of calculation time, for cores ranging
from 1000 (terascale) up to 1 billion (exascale).

In Fig. 6, we see the performance prediction using typical lattice-Boltzmann model
parameters (in this case for Palabos, but equally applicable to HemeLB), showing the
achievable time and spatial scales (at 10um resolution) achievable on 1k, 1M and 1G
cores (the latter representing exascale).

The above has so far considered only the simulate phase of the lattice-Boltzmann
application. However, as system sizes increase, the initialisation time (during which the
load decomposition of the system occurs, and ranks read the relevant parts of the
geometry into their memory) will also increase. The initialisation phase in the Blue
Waters benchmark simulations varied (approximately) from 15 to 40 minutes, with
more cores corresponding to longer initialisation.

Conclusion
The performance work on the Binding Affinity Calculator provides a good indication of
how Replica Computing (RC) pattern applications are likely to scale under extreme
parallelism.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 59 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

This includes, to a large extent, the Heterogeneous Multiscale Computing (HMC)
pattern, for which the greatest computational cost generally lies in the execution of
replicas. However, as we have elaborated in deliverable D2.2, the dynamic nature of
HMC, depending on the quality of the surrogate model to capture accurately enough
the microscale dynamics, makes this less obvious then for the pure RC patterns. It
might well be that exascale performance is required in phase 1of HMC (the initial
training of the surrogate) after which HMC applications could resort to reduced
resources. This remains a topic of research. In the materials HMC application (UCL), for
example, the similarity between microsimulations is determined in parallel by the
primary model (which is mostly a Finite Element Solver), but the costs are dwarfed by
those of running the many submodels (replicas). In the less common case of an HMC
pattern with a very expensive macroscale (primary) model, the performance on
exascale will likely more closely follow that of the Extreme Scaling pattern. It is our
opinion that both RC and HMC type of applications are viable candidates for exascale
computing, as we have demonstrated on several occasions in ComPat. However, we
have only been able to ‘scratch the surface’, and more research and demonstrators are
required to substantiate these conclusions.

In the case of applications following the Extreme Scaling (ES) pattern, the performance
of the primary model will be of most interest at levels of extreme parallelism. The
strong scaling performance studies of HemeLB were carried out to test this aspect.
Prediction work carried out by Chopard et al. [4] indicated (for a general lattice-
Boltzmann application) the expected attainability of physical and temporal scales with
putative exascale systems (1 billion cores) of order 100 s for 10 cm (or 10 s and 100cm)
after 1.5 days of wall clock time. Depending on the problem size, it may be more
efficient to run at lower resolutions, while using several replicas, in order to derive
uncertainties from the simulations. Again, we believe that ComPat has demonstrated
that ES can scale to the exascale, if the primary model is capable of extreme scaling
and if the auxiliary models that may serialize the execution, are deployed in an
efficient way, maybe even by staging two independent ES runs. This was discussed and
demonstrated in deliverable D2.2 and D3.2.

Impact of exascale resources on future scientific applications
The major conclusion of this work is the excellent performance of replica based
calculations to extreme parallelism supercomputing. While this is directly applicable to
RC or HMC applications in phase 1 of the performance cycle, the efficient use of ES
applications may need more careful treatment (depending on the physical and
temporal scales of the process of interest). One way will likely be to respond to the
growing desire for uncertainty quantification (UQ) in computational science, leveraging
the efficiency of replica computing on exascale systems by running several ES
applications in the same allocation. This will have the benefit of rendering the
simulation output “actionable”, in the sense that UQ will give users more faith in the
applicability of the results and thus greater ability to make decisions thereon.
Additionally, Replica Computing is typically more resistant to node failures.

 D2.2 Report on Deployment of Deep Track Tools and Services to Improve
Efficiency of Research and Facilitating Access to CoE Capabilities

PU Page 60 Version 0.3

“This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 675451“

We therefore expect that the actual impact of exascale resources on multiscale
computing is likely to be to encourage the inter alia use of replica based computing
patterns (RC or HMC), and quantifying uncertainties in larger simulations (such as the
primary model of the ES pattern) which is not feasible with present day petascale
facilities.

