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3. Acronyms and Definitions 

 
Acronyms Definitions 

AlyaCCM Alya Cardiac Computational Model 

API Application Progressing Interface 

ARP Architecture Review Board 

AVX Advanced Vector Extension 

BAC Binding Affinity Calculator 

CGNS CFD General Notation System 

NetCFD Ninf computational component for CFD 

CFD Computational Fluid Dynamics 

CHASTE Cancer, Heart and Soft Tissue Environment 

CoE Centre of Excellence 

CPU Central processing unit 

CUDA Compute Unified Device Architecture 

DEM Discrete Element Method 

ESMACS Enhanced Sampling of Molecular Dynamics with Approximation of 
Continuum Solvent 

FSI Fluid-Structure Interaction 

GB Gigabyte 

GPCR G-protein coupled receptor 

GPU Graphics processing unit 

HDF5 Hierarchical Data Format 5 

HemoCell High PErformance MicrOscopic CeLlular Library 

HPC High Performance Computing 

HTBAC High-Throughput Binding Affinity Calculator 

HTMD High-Throughput Molecular Dynamics 

I/O Input / Output 

ILP Instruction-level parallelism 

IPC  Instruction per cycle 

KPI Key Performance Indicator 

LBM  Lattice Boltzmann Method 

LIC Line Integral Convolution 
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MD Molecular Dynamics 

ML Machine Learning 

MPI Message Passing Interface 

NUMA Non-uniform Memory Access 

OpenCL Open Computing Language 

OpenMM A high performance toolkit for molecular simulation 

OpenMP Open Multi-processing 

PDB  Protein Data Bank 

RAM Random access memory 

SIMD Single Instruction Multiple Data 

SPMD Single Programme Multiple Data 

SRAM Static random access memory 

TIES Thermodynamic Integration with Enhanced Sampling 

UMA Uniform Memory Access 

WP Work Package 
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4. Executive Summary 

In this document we summarize the impact of the modelling and simulation research 
activities in CompBioMed, including: 

• High quality research done either by the project full and associate partners 
within the project or outside the bounds of CompBioMed but under its influence 
(for instance, research done by a partner as a subproduct of what's done in the 
project) 

• High quality publications produced  
• Collaborations: either previous collaborations enforced or new collaborations 

initiated by the CoE’s creation 
• Scope widening, especially towards the medical world: clinical, academia, 

companies, etc. 
• Technology transfer to spinoffs and startups from research related to the 

project. 
Since the very conception of the proposal and led by our own long and consolidated 
experience we were conscious that the impact of our work in the community would be 
directly related to the way in which we perform our research. We all do research in the 
biomedical realm with some common characteristics: (a) we are developers of complex 
computational modelling tools which are (b) very expensive on computational grounds, 
requiring large amounts of computational power (i.e. supercomputers), (c) within a 
domain in which multiscale modelling is the norm. In our field, complexity means "closer 
to reality" which in turn means "multiscale", where complex parallel workflows, huge 
input and/or output datasets, non-conventional mathematical models, parallel 
programming techniques and challenging visualisation techniques are essential. We 
have observed that the simultaneous way in which we address features (a) and (b), from 
the standpoint of (c), guarantees high impact. Therefore, this document describes our 
research path and then summarizes its impact.  

5. Multi-scale problems and large-scale computational resources 
In science [2], we look to convincingly explain the processes at work in phenomena that 
we observe, as well as to predict what will occur before it does so. Predictions of real-
world events all need substantial quantities of data and validated computational models 
together with the execution of many high-fidelity simulations. In many cases, the models 
that describe the phenomena are multiscale, as their accuracy and reliability depend on 
the correct representation of processes taking place on several length and time scales. 
Multiscale phenomena are everywhere around us [4–10]. If we study the origin and 
evolution of the Universe [11,12] or properties of materials [13–17], or develop fusion 
as a potential energy source of the future [18], in all these cases and many more we find 
that processes on quite disparate length and time scales interact in strong and nonlinear 
ways. In short, multiscale modelling is ubiquitous and progress in most of these cases is 
determined by our ability to design and implement multiscale models of the particular 
systems under study [4,9,19,20].  
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Multiscale means a disparity on modelling schemes span along wide space and time 
ranges. In the biomedical realm, the ranges go from molecules all the way up to 
healthcare organisations, from nanoseconds to years. This vast space-time region, with 
all the scales tightly interacting together is the domain where CompBioMed is leaving its 
footprints.  

5.1. The Computational Biomedicine Panorama 
 
CompBioMed strives to model using computational means, ranging from software to 
hardware and from mathematical grounds to programming strategies, the complex 
systems involved in biomedical research and its applications.  
 
Figure 1 and Figure 2 display the panorama. Figure 1 depicts the intervening scales and 
organisational levels in which CompBioMed acts. At the top, there is the Healthcare 
Organisation, which gathers all our efforts and focuses them. At the bottom there is the 
molecular level, where the deepest roots of the genome reside. Compared to other 
complex multiscale systems, in biomedical ones the lowest scales are largely responsible 
for emergent properties all the way up. Conversely, upper scales feedback to lower 
ones, creating a non-linear coupling loop. This does not mean that a complete system's 
understanding is required to simulate at all scales, but it shows that neglecting the 
effects of any single scale upon the others may lead to erroneous predictions. 
Considering that the final target of what we do is human healthcare, wrong predictions 
are highly undesirable.  
 
 

 
Figure 1. Scales and organisation levels in the biomedical realm (from the IBME - UTK.) 
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Error! Reference source not found. shows also another aspect of the problem. In its 
lower half, scales are grouped by the different scientific specialities dealing with them. 
The fact that there is no integrative scientific or technical specialty expresses the 
difficulty in joining efforts to reach a common objective, emphatically conveying the 
importance of multi-disciplinary projects like ours. From the human point of view, the 
different and frequently disconnected specialities lead to communication problems 
among researchers and practitioners. Their background and training are different not 
just in content but also in orientation, which can even on occasion lead to dismissive 
behaviour among researchers working at different levels. Perhaps the most transversal 
of all is the multiscale imaging, which is frequently the glue binding research groups (as 
the authors of this report have frequently observed). In the middle, the figure shows the 
wide variety of modes of information acquisition, from purely medical expert 
observations to X-ray scattering, adding another layer of difficulty when integrating the 
scales, organisation levels and dedicated researchers.  
 
Figure 2 shows the disparities in the relevant spatial dimenions of each scale. Observe 
that there are 11 orders of magnitude from the bottom up. Clearly, this shows the 
impossibility of simulating the full rangeof scales explicit in a single simulation. However, 
for a given scale, upper and lower influences must be considered, and ultimately, 
modelled in one way or another.  
 
 

 
 

Figure 2. Size disparities among the scales in the biomedical realm. 
 
The increasing importance of multiscale modelling in many domains of science and 
engineering is clearly demonstrated. Therefore, we must anticipate that multiscale 
simulations will become an ever-more important form of scientific application on high-
end computing resources, necessitating the development of sustainable and reusable 
solutions, often in the form of semi-automated workflows or pipelines of individual 
algorithms, for such applications. That is, we expect to need generic algorithms for 
multiscale computing. 
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We therefore require innovative new ways of computing to face the challenges posed 
both by multiscale modelling and simulation and by the emerging high-end computing 
ecosystem. This will contribute to our ability to solve multiscale problems and, as we will 
argue, can also offer an avenue for new ways to efficiently exploit exascale resources. 
Multiscale computing could face these challenges by deploying its various single-scale 
components across heterogeneous architectures of exascale resources, mapped to 
produce optimal performance and designed to bridge both temporal and spatial scales 
[2, 21-23]. Therefore, we should embark upon initiatives to efficiently deploy multiscale 
codes on today’s and future high-performance computers, among them and, most 
notably, HPC-cloud environments. Thereby, we need to establish a new and more 
effective paradigm for exploiting current and emerging computing resources.  
 
In this respect, the European Centers of Excellence (CoEs) represent a genuine milestone 
for they have been created to fill this gap. Particularly, in CompBioMed we explore, 
study and discuss generic multiscale computing on emerging exascale high-performing 
computing (HPC) environments for biomedicine and biomedical research. Briefly, thanks 
to our expertise, diversity and integration, the basic action of CompBioMed is to map 
complex multi-scale simulations to large-scale computer architectures in the most 
efficient way. The CoEs address not only the technical side with a strong focus on the 
road to exascale, but also the "as-a-service" character that they must have. All our 
research impact, as reported in this document, is directed to such objectives. 

5.2. CompBioMed action 
As described in the DoAand because of the innate multiscale character of computational 
biomedicine, CompBioMed's WP2 objective is to establish layered application pipelines 
of simulation and data analysis software, with the goal of mapping them to large-scale 
computational resources in an efficient way. Due to the different levels of development 
of the codes at the beginning of the project, we followed a "Fast/Deep Track" strategy, 
which was streamlined during the project. We regard this strategy as a work paradigm 
for how to exploit large-scale computer infrastructures in a rapid and efficient way for 
every realm dominated by multiscale problems. Let us briefly recall the "Fast/Deep 
Track" concepts. 
 
The Fast Track (FT) builds on the existing capabilities of the partners in the use of HPC 
for modelling and simulation. The FT is focused on HPC-based methods that already 
handle multi-physics and multi-scale features to produce integrated high fidelity 
personalised human models. Through the FT we were able to study very rapidly a set of 
concrete problems with relatively minor adaptations to the simulation codes of the work 
package developers. The FT has allowed us to address key biomedical challenges from 
the start of the project using the existing e-infrastructure, focusing firstly on the "low-
hanging fruit". 
 
The Deep Track (DT) addresses additional medium-term challenges. The DT extended 
the capabilities available from the FT, providing new capabilities often dictated by end-
users requirements as reported in D6.6, addressing more complex requirements that 
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require a deeper and longer period of development. What is studied thanks to the Fast 
Track was recycled and projected into new areas through the Deep Track. On many 
cases, the standardised procedures, interfaces and integrative tools designed in the FT 
extended to meet the needs of different categories of end-users, including clinicians, 
researchers and industrial users, helping to compose pipelines which can then be 
executed on HPC and other computing resources. A very interesting example of this is 
the porting process of some of our tools from supercomputing facilities to cloud 
infrastructures.  
 
Thanks to this idea, we firstly studied the different phases when developing a multiscale 
model and simulating it on available computing infrastructure, and analyse where in our 
expert view we could, and possibly should, continue to further develop generic 
frameworks and software tools to facilitate multiscale computing. Next, we focused on 
simulating multiscale models on high-end computing resources, which we call High 
Performance Multiscale Computing (HPMC), in the face of emerging exascale 
performance levels. We argue that the problems at hand are so complex that strong and 
weak parallel scaling of monolithic applications often may reach its limits at the exascale 
and, therefore, we need to invoke what we would call multi-scaling [1]. Note that 
although our analysis is driven by the needs of modelling multiscale systems, our 
arguments with respect to the scalability challenge for multiscale systems to the 
exascale also point to the necessity to consider new approaches to increase concurrency 
within complex (single-scale) models through new algorithms and corresponding 
implementations. 
 
In a multiscale simulation, each relevant scale needs its own type of solver and strategy. 
Accordingly, we can define a multiscale model as a collection of coupled single scale 
models (loosely defined based on the dominant properties that can be computed 
reliably with a dedicated, so-called “monolithic” solver). Following the strategy 
proposed by CompBioMed, one can then identify generic multiscale computing patterns 
(MCPs) [3] that dictate the scope for novel multiscale algorithms at the exascale.  
 
The importance of identifying such MCPs and acting accordingly is clearly deduced from 
papers such as [1-3] and also in the previous technical report of WP2 [24]. Exascale 
computing poses a number of key challenges that application developers cannot ignore: 
scheduling and robustness of algorithms and their implementation on millions of 
processors, data storage and I/O for extreme parallelism, fault tolerance, reducing 
energy consumption, diverse data formats and quaility, etc. Even the disparity in 
backgrounds, trainings or computational resources availability of the stakeholders are a 
hindrance to further development. For these reasons, an incremental approach that 
attempts to scale up monolithic solutions from a given level of computing power (i.e. 
petascale) will not be successful at the following (i.e. exascale), requiring a global 
analysis and subsequent action. Novel algorithms and simulation strategies are needed 
across the software stack, bridging between the applications and the hardware 
environments. These algorithms need to be designed specifically to address these 
exascale challenges in order to guarantee efficiency and resilience. We believe that, 
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drawing on the concept of generic MCPs, we can realise a separation of concerns, where 
the challenges stated above can be resolved to a large extent on the level of the MCPs, 
while the multiscale application developers can focus on composing their multiscale 
simulations. This would then lead to much shorter development cycles for multiscale 
simulations and much more reliable multiscale computing on exascale machines.  
 
From the purely computational viewpoint, there are also strong computational 
considerations that dictate a need to shift the paradigm for usage of high performance 
computers from the conventional promotion of monolithic codes which scale to the full 
production partition of these computers, to much more flexible computing patterns. To 
clarify this further, computational scientists including ourselves have worked out 
numerous effective ways in which to perform spatial domain decomposition. However, 
petascale and future exascale machines can only reach these performance levels by 
aggregating a large number of cores whose individual clock speeds are no longer 
increasing. As a result these high performance computers are becoming "fatter", not 
faster and speed-up is only achievable by efficient parallelism over all the cores. But 
because the parallelism is usually applied to the spatial domain, we are increasingly 
simulating larger slabs of matter, applying weak scaling by using more particles, a higher 
grid resolution or more finite elements. Yet often it is the temporal behaviour that one 
is really interested in, and that behaviour is not extended by adopting larger computers 
of this nature, or by making the problem physically larger.  
 
The smaller the space you want to solve for a given problem, the smaller the time scales 
you will need to capture: while a hurricane devastates a region in a few days, a leaf falls 
from a tree in a few seconds. Should we use the same simulation strategy for the leaf 
and the hurricane? Since the scientific problems of interest usually have timescales 
which scale as a nonlinear function of the volume of the system under investigation, 
each temporal update requires more wall clock time for larger physical problems. This 
is in fact a recipe for disaster: we are not getting closer to studying large space and long 
time behaviour with monolithic codes. To be sure, accelerators (such as GPUs) and 
special purpose architectures [25] can speed up many floating point calculations in 
particular cases such as molecular dynamics, often by a factor between one and ten, but 
this is not sufficient to bridge the vast timescales of concern that range from 
femtoseconds to seconds, hours and years; nor indeed to quantify the uncertainty in 
today’s still all to prevalent “one-off” simulations.  
 
But this is not all. Problems are not limited to simulation algorithmics and their mapping 
to architectures. Large differences on resources availability and accessibility, and its 
connection for different scales, could strongly impair multiscale modelling. For instance, 
uncontrolled spreading of patients' clinical data very frequently causes concerns against 
moving it from healthcare institutions. Then, feeding patient-specific data on a 
simulation pipeline is, in general, much more than a complex technical data, because 
doctors don't want to move sensitive patient's data from hospitals unless complex (and 
sometimes uncertain) procedures are followed.  
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Another problem that goes beyond their technical burden is the different access policies 
of supercomputing centers and cloud providers. On the one hand, supercomputing 
centers are almost purely devoted to research runs in which sustained computational 
efficiency and equal load balance is required from the users (high throughput computing 
is almost banned there), researchers' accounts are created and resources usage granted 
under stringent conditions (production runs are only allowed after a committee 
authorize them), inter-process communications to and from the facilities could be 
strongly restricted (for security reasons, which makes almost impossible to integrate a 
supercomputing center in a cloud infrastructure), facilities are in general homogeneous 
in purpose (when prepared for intense computing they are not for data bases and 
viceversa) or in architecture (for instance GPU clusters' admins ban CPU-only jobs), 
quality of service goes against business (whether you pay or not, your runs go always to 
a general batch system, making very difficult to foresee when you will have your job 
done), etc. On the other hand, cloud infrastructures, which can solve most of these 
problems, have been until very recently extremely weak on computational power with 
respect to supercomputing centers, an issue which is progressively being improved 
(today most of the commercial cloud providers can make available powerful and 
efficient instances up to 1000 cores). However, pricing policies of cloud providers are 
still far from attractive for the kind of problems we are dealing with: computationally 
intensive, large quantities of data to be transferred and stored, fast interconnects 
between heterogeneous resources, etc., because providers charge separately for 
power, cycles, networks and storage. This result is that a relatively complex workflow 
with all these features can become extremely expensive.  
 
What is needed are more innovative ways of bridging the gap. Multiscale computing, as 
proposed by CompBioMed partners, is progressively able to do this by deploying its 
various single scale component parts across such heterogeneous ecosystems, mapped 
so as to produce optimal performance and designed to bridge both time and space 
scales and, last but not least, being capable of generating a real business model. Thus, 
we have embarked upon a programme to efficiently deploy componentised multiscale 
codes on today's and future high performance computers and, thereby, to establish a 
new and more effective paradigm for exploiting HPC resources, whether they are 
located in healthcare institutions, supercomputing centres, universities or cloud 
providers. Computational biomedicine is the ideal melting pot where these problems 
can be addressed and solved, adding value to every part of the chain. 
 

6. The WP2 organization and strategy: Exemplar Research areas 
In CompBioMed we have chosen three biomedical application domains which are highly 
representative of the whole realm. We call them Exemplar Research. According to the 
Description of Work, they are the Cardiovascular, Molecularly-based Medicine and 
Neuro-musculoskeletal Exemplar Research areas. Each Exemplar Research was defined 
as a task, linked to other smaller six ones which were transversal to all the WP.  
 



  D2.4 Report on the Impact of Modeling and Simulation within  
Biomedical Research as enabled by CompBioMed 

 

PU Page 13  Version 1.0 
 

“This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Grant Agreement No 675451“ 

 

It is important to remark the connections of this work package with others. WP2 

strongly interacts with WP5 Resource and Infrastructure Support, a WP that is 
concerned with porting, deployment, and optimisation of the CompBioMed codes for 
execution on supercomputing resources, and with WP6 Empowering Biomedical 

Applications, which facilitates the development and execution of complex workflows 
and the interaction with end-users. 
 
The following sections summarise the work carried out within the three exemplar 
research areas mentioned above, with more details provided for each application 
together with their related publications reported in Appendix.  

6.1. Cardiovascular Exemplar Research 
According to the DoA cardiovascular disease accounts for half of sudden deaths in 
Europe; improvements in patient risk stratification and prediction of clinical intervention 
are both urgent and challenging. In this area we will consider two critically important 
disease areas: firstly, cardiovascular diseases having a direct effect on the function of 
the heart itself, be it on the electrophysiology, mechanics or blood flow (and, ultimately, 
the combination of all three); and secondly, disorders in the arteries, be it aneurisms in 
the abdominal aorta or in intracranial arteries, or stenosis in carotid or coronary arteries. 
These two areas cover the key computational challenges in multiscale modelling of 
cardiovascular disease (coupling of both loosely and tightly coupled physical processes, 
reliance on very high-level image processing techniques for geometry extraction and 
reconstruction, very high computational demand) and together make the ideal test bed 
for the development of a generic computational framework for biomedical applications 
requiring multi-scale, multi-physics simulations.  

6.1.1. Univesity of Geneva: "Digital Blood" within Palabos 

The focus of the Scientific and Parallel Computing Group at the University of Geneva is 
on high fidelity blood flow simulations. More in detail, we develop a high-performance 
computational framework for the simulation of fully resolved whole blood (Digital Blood 

in Massively Parallel CPU/GPU Systems) and additionally, we work on continuum 
models for flow diverting stents in 3d patient-specific intracranial aneurysms. 
 
Digital Blood in Massively Parallel CPU/GPU SystemsWe propose a novel high-
performance computational framework for the simulation of fully resolved whole 
blood flow. The framework models blood constituents like red blood cells (RBCs) and 
platelets individually, including their detailed non-linear elastic properties and the 
complex interactions among them. These kinds of simulation are particularly 
challenging because the large number of blood cells (up to billions) stand in contrast 
with the major computational requirement of individual constituents. While classical 
approaches address this challenge through simplified structural modelling of the 
deformable bodies (e.g., through mass-spring systems), the present framework 
guarantees accurate physics, desirable numerical properties through a fully featured 
FEM model and computational efficiency at the same order as more simplified state-
of-the-art models.  
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Figure 3. Shear flow with healthy RBCs (in red) and platelets (in yellow) in a domain of 50 μm3 at 35% 

hematocrit. 
 
Continuum model for flow diverting stents in 3D patient-specific simulation of 

intracranial aneurysms 

An aneurysm is a weak spot on a blood vessel wall that causes a balloon-like bulging. 
Aneurysms tend to increase in size, and can be at risk of rupturing, leading to internal 
bleeding, with severe consequences. In particular, rupture of intracranial aneurysms is 
an event with a high mortality rate, and about one third of the survivors suffer from 
permanent neurological or cognitive deficits. For diagnosed aneurysms that are at risk 
of rupturing, different forms of treatment exist, one of which includes the insertion of a 
prosthesis into the artery, called a flow diverting stent. It has the shape of a tube, with 
a surface consisting of a very fine mesh of woven wires, and is inserted to cover the neck 
of the aneurysm. The role of this device is to divert the main bloodstream from the 
aneurysm to the artery, while avoiding surgically clipping off the aneurysm from blood 
supply altogether. The modification in the bloodstream pattern achieved by this 
procedure is capable of encouraging a blood clotting reaction in the aneurysm, which in 
its turn fills the aneurysm dome and prevents its rupture. 
 
Computer simulation can be of use in many ways in this field of medical science. For 
example, the flow mechanics of the blood, and biological processes inside the blood, are 
simulated to promote a fundamental understanding of the factors involved in the blood 
clotting process of an aneurysm and propose new means of medical treatment. On the 
other hand, computer simulation is also a useful tool for day-to-day medical decision 
making, as it can be applied, for example, whether a given patient aneurysm could be 
successfully treated through a stent insertion procedure, and which stent model to use 
for optimal results. The idea is to use medical imagery to construct a virtual model for 
the artery and the aneurysm of a patient, and introduce, virtually, different flow 
diverting stents into this artery. Numerical models known under the name of 
Computational Fluid Dynamics are then used to simulate the mechanical properties of 
blood flow in the artery and test the ability of the flow diverter to encourage blood 
clotting.  
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Figure 4. Blood vessel, aneurysm, and stent for the three investigated patient cases. 

6.1.2. University of Amsterdam: HemoCell, the microscopic cellular library for 
supercomputers 

The developments were realised in three distinct areas. First and foremost, the 
advancements and optimisations were carried out on the open-source HemoCell (High 
pErformance MicrOscopic CELlular Library) simulation code. These allow larger domain 
sizes and longer simulated physical time-scales. Furthermore, improvements were made 
to the robustness of the mechanical model, i.e. the mechanical description of flowing 
cells, using uncertainty quantification (UQ). In tandem, similar UQ was applied to the in-
stent restenosis model. Finally, these improvements made new applications possible. 
The cell level trafficking was explored in both healthy cases, and in cases with rigidified 
red blood cells, which serve as a model for diabetic disease. 
 

 
Figure 5. Haematocrit distribution for the channel flow case with different numbers of Red Blood Cells 

(N), average haematocrit H = 38%. ‘small’ (left), ‘intermediate’ (middle), and ‘large’ (right) systems. 
Extracted from [26]. 

 

6.1.3. University College London: HemeLB for 3D flows in large sparse geometries 

Using HemeLB, a highly optimized lattice-Boltzmann solver for haemodynamic flow in 
large, sparse 3D geometries, our research during the course of the CompBioMed project 
has focused on two strands - one for automated, validated and patient specific 
simulation, and the other on the computational optimization work required to best 
exploit coming exascale infrastructure. 
 

Magnetic Drug Targeting (MDT) capabilities were implemented in HemeLB, allowing the 
dynamics of paramagnetic iron-oxide particles (in practice often used as a drug delivery 
method) to be observed in a geometry obtained from an MRI scan of a patient’s brain 
[27]. This model allows exploration of the effect of changes in particle size, magnet 
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strength and placement, and patient physiology (heart rate, etc) on the delivery to a 
given target site (e.g. a tumour site) for a patient specific vascular system. In this 
multiscale model, the inlet velocity profiles for the 3D region are generated using a 1D 
Navier-Stokes solver representing the rest of the human body. 
 

 
 

Figure 6. A small section of the simulated Circle of Willis geometry, showing the paramagnetic drug 
particles passing through a (pink) target region under the influence of a (blue) magnetic dipole. 

 
In another study [28] we collaborated with the National Hospital for Neurology and 
Neurosurgery (NHNN) in London, to obtain Transcranial Doppler (TCD) measurements 
of blood velocity in the Middle Cerebral Artery (MCA) of a stroke patient, along with CT 
scan data allowing the 3D vasculature (of that same patient) to be generated for use in 
HemeLB simulations. A simple validation study was then carried out by comparing the 
velocity profiles from simulations against those measured by TCD at multiple points 
along the MCA. We also considered the sensitivity of the simulations to changes in 
rheology model (Newtonian vs shear-thinning) and in mesh resolution. 

6.1.4. Lifetec: AngioSupport for coronary artery disease 

Cardiac teams in the larger hospitals daily discuss the treatment of multiple patients 
with coronary artery disease (CAD). These patients have one or multiple severe 
occlusions in the coronary arteries which are complicated cases and requires the 
expertise of the cardiac team. For each patient a treatment plan is defined, typically 
consisting of coronary artery bypass graft (CABG) surgery or percutaneous coronary 
intervention (PCI). The decision between these treatments is currently based on 
studying coronary angiograms and the experience of the cardiac team. However, in case 
of multiple occlusions, diffuse coronary disease or complicated vasculature, choices in 
the position, length or diameter for a CABG or PCI is challenging.  
 
To help the cardiac team in this process, LifeTec Group talked with Pim Tonino, 

Intervention Cardiologist at Eindhoven Catharina Hospital, about a possible numerical 
model that can assist in this decision making. Together with Frans van de Vosse, 
Professor at the Biomedical Engineering Department of Eindhoven university of 
technology, LifeTec Group started the development of a clinical tool that could assist the 
cardiac team in treatment planning for each patient. Therefore, AngioSupport has been 
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developed; an interactive tool to predict the outcome of CABG or PCI to support clinical 

decision making of coronary interventions. 
 

 
Figure 7: Obtaining the 3D vessels by using the 2D images created during coronary angiography. 

6.1.5. University of Sheffield: OpenBF for vascular networks 

 

 
 

Figure 8. Diagram of the OpenBF cerebral vascular network model. 
 

OpenBF is a 1D hemodynamics network model developed at the University of Sheffield. 
Cerebral vasospasm (CVS) is a life-threatening condition that occurs in a large proportion 
of those affected by subarachnoid haemorrhage and stroke. CVS manifests itself as the 
progressive narrowing of intracranial arteries. It is usually diagnosed using Doppler 
ultrasound, which quantifies blood velocity changes in the affected vessels, but has low 
sensitivity when CVS affects the peripheral vasculature. In a recently published study we 
identified alternative and more effective biomarkers than the ones currebntly used and 
that could be used to diagnose CVS [29]. For this we used a verified and validated 1D 
modelling approach, openBF, to describe the properties of pulse waves that propagate 
through the cardiovascular system, which allowed the effects of different types of 
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vasospasm on waveforms to be characterised at several locations within a simulated 
cerebral network.  

6.1.6. Barcelona Supercomputing Center and University of Oxford: Alya Cardiac 
Computational Model 

Human-based computer models and simulations are a fundamental asset of biomedical 
research. They augment experimental and clinical research through enabling detailed 
mechanistic and systematic investigations. Owing to a large body of research across 
biomedicine, their credibility has expanded beyond academia, with vigorous activity also 
in regulatory and industrial settings. Thus, human in silico trials are now becoming a 
central paradigm, for example, in the development of medical therapies [30]. 
 
Human cardiac physiology is one of the most advanced areas in physiological modelling 
and simulation. Current human models include detailed information on the ionic 
processes underlying the action potential such as the sodium, potassium and calcium 
ionic currents, exchangers such as the Na/Ca exchanger and pumps such as the Na/K 
pump. They also include representation of the excitation-contraction coupling system, 
which modulates the calcium transient and, in turn, myocyte contractility. Human 
cardiac models are also multiscale, both spatially and temporally, and integrate 
information across the subcellular, cellular, tissue, and organ levels [31]. 
 
In this report we showcase the human multiscale models we developed through the 
integration of multimodality datasets, including: ionic current measurements; action 
potential and calcium transient recording; active force measurements; magnetic 
resonance and computed tomography images; electrocardiograms. Human data were 
used at multiple stages of model development, for calibration and also to perform 
independent validations at different scales.  
 
Through an intense collaboration BSC and the University of Oxford have developed a 
cardiac computational model, based on BSC's Alya multi-physics / multi-scale parallel 
simulation code, which has been used at different scales attacking complex problems, 
from single cell models up to medical devices clinical trials.  
 
Single Cell Models 
Human in Silico Drug Trials to Predict Risk of Torsade de Pointes 
During the first year of the project, we demonstrated the predictive power of 
populations of human ventricular AP models for prediction of drug-induced Torsade de 
Pointes (TdP) risk based on repolarisation abnormalities occurrence. We were able to 
achieve a prediction accuracy of 89% for a set of 62 reference compounds. The results 
of these in silico drug trials were published [32], and also led to the award of the 
International 3Rs prize in 2017. More recently, we performed a similar study, including 
an additional biomarker: the electro-mechanical window (EMw), defined as the delay 
between the duration of electrical and mechanical systole, which has been suggested as 
a promising biomarker to predict clinical risk of Torsade de Pointes (TdP) arrhythmia in 
several pre-clinical animal models [33-36]. Our single cell surrogate of the in vivo EMw 
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was able to predict TdP risk for a dataset of 40 compounds with 90% accuracy, 
confirming the potential of drug-induced EMw shortening as a biomarker for pro-
arrhythmic risk. The results of these in silico drug trials are currently under review for 
publication [37]. 
 
In Silico Predictions of Drug-induced Changes in Contractility  
These are preliminary results obtained by testing the effect of two reference compounds 
on our single cell model of cardiac electro-mechanics, to explore drug-induced changes 
in active tension: dofetilide and verapamil. 
 
Multiscale Models 
3D Electro-mechanical Simulations of the Human Heart 
The multiscale human cardiac electro-mechanical model with ellipsoidal geometry is 
able to simulate all the four phases of the cardiac cycle. We use such a model to test 
pressure - volume functions which help to understand the cycle. We also tested 
boundary conditions for the pericardium.  
 
Applications towards clinical translation  

A common characteristic of the existing human cardiac models is that personalised 
geometries usually come from in-vivo imaging and the majority of computational 
meshes consider simplified ventricular geometries with smoothed endocardial (internal) 
surfaces, due to a lack of high resolution, fast and safe in-vivo imaging techniques. 
Acquiring human high-resolution images would mean for the patient to undergo long, 
expensive and impractical scans, in the case of magnetic resonance images (MRI), or 
could present a risk for the patient’s health, in the case of computed tomography (CT), 
since this process involves a considerable amount of radiation. Smoothed ventricular 
surfaces are indeed considered by the majority of existing human heart computational 
models, both when modelling blood flow dynamics and electrophysiology. 
 
However the endocardial wall of human (and other mammals species) cardiac chambers 
is not smooth at all; it is instead characterised by endocardial sub-structures such as 
papillary muscles (PMs), trabeculations and false tendons (FTs). Additionally, 
fundamental anatomical gender differences can be found in cardiac sub-structural heart 
configuration as female hearts present less amount of FTs [38]. 
 
Through collaborations with the University of Minnesota we have created highly 
detailed human heart models from ex vivo high-resolution MRI data, to study the role 
of cardiac sub-structures and gender phenotype in human cardiac physiology, through 
computational fluid dynamics (CFD) and electrophysiological high performance 
computing (HPC) simulations.  
 
Path to Code Validation 

Validation means that the simulation software is correctly reproducing the multiple 
physics of the question of interest for a determined context of use. This not only requires 
correctly solving the programmed model, but that the model effectively models the 
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physics. To do so, experimental data is required to compare ex vivo, in vitro and in vivo 
data against in silico results. This stage requires a detailed description of the variables of 
the physical problem which are, in most of the cases, very difficult to obtain with a high 
accuracy.  
 
As part of the collaboration with the Centro Nacional de Investigaciones 
Cardiovasculares (CNIC), the pathway to the validation of the cardiac model against 
experimental is being underway, as published in one of BSC's PhD thesis, supervised by 
Mariano Vázquez from BSC.  
 

 
 

Figure 9. Activation maps including isochrones of the epicardium and the endocardium from 
experimental measurements and simulation data [39]. 

 
 

 
 

Figure 10. A leadless pacemaker implanted in the virtual heart. Q-criterion and velocity fields can be 
seen distorted in the soroundings of the implantation spot [40]. 

 
Path to medical device testing 

During the last three years, through different collaborations, the area of device testing 
has been exploited in BSC's research group involved in CompBioMed project. Especially 
thanks to collaborations with the associate partner Medtronic, our model of the heart 
was used to study devices related with heart diseases such as pacemakers and stents. 
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First we study widely known treatments for common pathologies, although not 
completely understood. These simulations can help to better understand the pathology 
and the treatment, or at least optimise the device set-up to maximise the performance. 
The stages of verification and validation are required to confidently translate these 
results to clinical applications. 
 

 
 

Figure 11. The left side shows a heart beating in normal conditions. The right side shows a heart beating 
under left bundle branch block. The elecrical dyssynchrony is easily seen. Also the reduction in the 

velocities on the fluid domain that will lead to a drop in the ejection fraction [40]. 

6.2. Molecularly-based Medicine Exemplar Research 
Quoting the DoW, many areas of medicine rely on a molecular understanding of the 
underlying human biology. Indeed, the pharmaceutical industry’s success has been 
largely underpinned by such knowledge. Its business model is being seriously challenged 
today, with rapidly increasing sums of money invested in an attempt to maintain an 
acceptable pipeline of patentable products. However, the central premise of drug 
production, namely that one can hope to produce “blockbuster” one-size-fits-all drugs 
for the entire global population, has proven impractical; most drugs that have been 
developed for specific disease treatments only applying to subsets of the population. 
Instead, the industry now needs to think in terms of multiple drugs which address any 
specific disease case, using stratification (based primarily on gene sequencing) as a first 
step along the way to ultimate personalised drug selection and treatment. Due to 
advances in gene sequencing, we now have the basic patient specific data to hand that 
allow us to begin to develop personalised drug treatment.  

6.2.1. Universitat Pompeu Fabra: Machine Learning and Molecular Dynamics  

Pharmaceutical industry is facing an unprecedented challenge nowadays. Introducing a 
new drug into the market involves a 15-year-long process and billions of dollars in 
investment, yet the success rate is pretty low. The probability that a candidate drug in 
Phase I clinical trials ends up being approved is around 7% [41]. It is in everybody's 
interest to keep drug discovery as a sustainable model, and therefore it is necessary to 
reduce its overall cost, speed up the discovery process and improve the success rates. 
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Figure 12. General scheme of the entire drug discovery process and all the stages required to release 

new medicines into the market. 
 
Our primary objective within the CompBiomed project has been to develop novel 
computational methods for the early stages in the drug discovery pipeline in order to 
accelerate the obtention of drug candidates and reduce the experimental workload and 
its associated costs. We advance towards the next generation of drug discovery, which 
relies on computational predictive models that are able to test millions of compounds 
in silico, giving accurate and precise results and reducing the amount of experimental 
tests needed on the design process. Furthermore, having computational methods that 
are powerful enough opens up the possibility to drastically reduce (and, on the long 
term, even remove) animal experiments, a fundamental requirement for a more 
sustainable and ethically responsible drug discovery process. 
 
With the recent advances in artificial intelligence and deep learning we can leverage the 
data and use it for novel predictions. Particularly, deep learning can be applied to extract 
complex patterns from simple representations. In our work, we leverage deep learning 
methods to extract patterns from three-dimensional representations of molecules and 
proteins. We developed models inspired by computer vision architectures, where both 
protein and the ligand are divided in a three dimensional grid with features representing 
different atomic properties, such as hydrophobicity or aromaticity.  
 

6.2.2. University College London: Supercomputers and binding affinities  

Drug development is a lengthy, complex, and costly process (it is estimated that and 
average of ~€2.2 billion is required to get a drug into the clinic [42]) and involves a high 
degree of uncertainty that any given candidate will actually succeed. It is increasingly 
recognised that this is compounded by the variation in response between patients, 
implying that we can no longer hope to produce "blockbuster" one-size-fits-all drugs for 
the entire global population [43]. Consequently, new approaches are required that 
facilitate better targeted treatments for subsets of patients. Our goal is to support this 
endeavour by developing simulation techniques that allow us to understand how drugs 
interact with their target proteins and how genetic variation can affect this.  
  
The binding affinity calculator (BAC) software developed within the molecular medicine 
strand of CompBioMed is at the heart of a research programme which aims to influence 
both industrial and clinical workflows. The common approach that under pins these 
goals is the generation of computational protocols which provide reproducible binding 
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free energy estimates for ligand binding from molecular simulation. Our research has 
sought to address this based upon a theoretical understanding of the utility of ensemble 
simulations to provide efficient sampling and meaningful uncertainty quantification 
[44]. This has led us to develop a suite of computational protocols which we call ESMACS 
(enhanced sampling of molecular dynamics with approximation of continuum solvent) 
and TIES (thermodynamic integration with enhanced sampling) [45]. The former based 
on the use of computationally inexpensive end point calculations and the latter more 
expensive but accurate “alchemical” binding free energy calculations. 
 
On a practical level we have applied this insight to looking into a diverse range of drug 
discovery targets with the aim of identifying the reasons for differing levels of success 
for existing methods when using datasets involving different proteins or ligands from 
different regions of chemical space. Alongside our work focussed on drug discovery 
problems we have investigated the influence of mutations on drug binding, an issue of 
direct relevance to the effectiveness of therapies in individual patients.  

6.2.3. Janssen: Molecular Dynamics for drug discovery programs 

A ‘people’ definition of industrial computational chemistry includes a group of molecular 
modelling experts who use computational techniques, mostly to help molecular design 
in collaboration with medicinal chemists. Whilst other areas of application exist (such as 
in early target validation) this project will focus on methodologies that can make a 
significant step forward in the quality of molecular design. It can be argued that the 
current toolbox of an industrial computational chemist, despite incremental change, has 
not seen any fundamental improvement for over 10 years. Clearly challenge and 
investment are needed to learn if new methodologies can provide impact. In this project 
we studied new methodologies in areas of molecular dynamics calculations, and more 
accurate binding energy predictions.  
 
Traditional industrial computational chemistry is highly dependent on a small selection 
of approaches such as virtual screening, molecular docking, ligand similarity etc. 
Structure-based drug design, where typically an X-ray crystal structure of the target is 
available, permits docking to help molecular design. Pose prediction with docking, that 
is correctly placing the ligand in the right orientation in the binding site, is typically 
considered an achievable task. Docking can also show virtual screening enrichment, 
which means separating a structurally diverse set (such as a random high throughput 
screening collection) of actives from inactives. However, it is widely recognized, that for 
a congeneric series of structural analogues, such as the case in a drug discovery lead 
optimization program, docking methodologies are unable to differentiate or rank highly 
active from inactive molecules. Hence, computational structure-based design remains 
largely qualitative and based on visual assessment and discussion and prioritization of 
results within project teams. This leads to various limitations, such as the number of 
molecules which can plausibly be docked and reliably assessed in this labour-intensive 
way.  
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Various fundamental computational methodologies have existed for a long time but 
remain largely unused in an industrial computational chemistry setting. Molecular 
Dynamics (MD) is one of these. By using Newton’s classical equations of motion, 
computational simulations study the conformational changes of a protein (for instance) 
with time. Whilst these methods have existed for many decades, only now is it becoming 
feasible to consider running MD simulations for time scales that are relevant for issues 
of importance for drug discovery. At the same time, computational chemistry is 
undergoing significant changes due to access and porting of algorithms to Graphics 
Processing Unit (GPU) hardware. GPU’s provide thousands of cores and offer a cheap 
highly parallel architecture which is efficient for computational approaches such as MD. 
During the past several years major steps have also been made in the practical feasibility 
of calculating free energies of binding of small molecules to proteins from the 3D 
structure of the protein-ligand complex. Important factors include improved molecular 
force fields, better conformational sampling, and faster hardware. Free energies of 
binding can now be calculated to within 1 kcal/mol accuracy, which is much better than 
commonly used approaches like molecular docking. This level of accuracy has the 
potential to radically increase the impact of computational design to drug discovery. 
Development of methods and best practices for free-energy calculations, as carried out 
in this project, will enable more effective computational design of drug candidates for 
globular proteins and membrane-bound targets. 
 
Janssen’s primary interests in the CompBioMed project are in developing and using 
advanced molecular simulation methods to optimize lead compounds in discovery 
programs. Such methods, if proven robust and accurate could have a profound impact 
on the way drug discovery is performed. They would permit reliable computational 
triaging of very close analogue molecules greatly improving efficiency. Also, this would 
lead to high-confidence design of synthetically more challenging molecules leading to 
better drugs in new chemical space. Also, we envisage the accurate prediction of 
compound binding for targets that have mutated residues. This latter application can be 
of value in diagnostics, by predicting the best possible compound for a patient clinically 
(personalised medicine), but is also of use in discovery, where mutated targets occur 
regularly in antibacterials, antivirals, and oncology compounds. 
 
We will summarize the CompBioMed impact for Janssen by describing the main 
collaborations within the project. 
 
Collaboration Janssen - UCL 

Janssen collaborated with UCL on calculation of free energies of binding on public and 
on Janssen internal compound sets (targets BRD4, LDHA and PDE2). A manuscript was 
co-written and accepted for publication on the BRD4 application. A second manuscript 
is under review describing the LDHA application. Both cases have led to learnings about 
the suitable application of MMPBSA, so called ESMACS approach, for the calculation of 
binding free energies.  
 
Collaboration Janssen – UPF/Acellera 
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Janssen collaborated with UPF/Acellera to test machine learning methods derived from 
protein ligand binding datasets and used them to predict relative binding free energies.  
 
Janssen internal research for CompBioMed 

Within Janssen we evaluated the use of GROMACS for Free Energy Perturbation. We 
streamlined the application of FEP with GROMACS and ran calculations at SURFsara.  

6.2.4. EVOTEC: G-protein activated structures modelling for large-scale computers 

Evotec (UK) Ltd, as a leading industrial application partner, is responsible for four key 
objectives: adaptation of hierarchical G-Protein Coupled Receptors (GPCR) modelling 
protocol (HGMP) to HPC platform, developing of the new HGMP-HPC based tools / 
plugins that require high scale calculations, testing and application of HGMP-HPC 
integrated technology in real drug discovery cases within the CoE and to make it 
available to third parties seeking assistance from the CoE and/or from Evotec, and 
dissemination of the results of this work to our partners in academia and in pharma & 
biotech companies in order to stimulate follow-on research. Evotec has also published 
the outcome of this work in peer-reviewed journals and at scientific conferences. Evotec 
(UK) Ltd (Dr Alexander Heifetz) has established a close collaboration with UCL (group of 
Prof Andrea Townsend-Nicholson) [46]. In the framework of this collaboration, they 
developed computational methodologies for structural exploration and tools for drug 
design, described as follows: 
 
Rationalizing the receptor-ligand binding and drug-candidates’ residence time [47]. 
Drug-target residence time, the length of time for which a small molecule stays bound 
to its receptor target, has increasingly become a key property for optimization in drug 
discovery programs. However, its in silico prediction has proven difficult. Here we 
describe a method, using atomistic ensemble-based steered molecular dynamics (SMD), 
to observe the dissociation of ligands from their target G protein-coupled receptor in a 
time scale suitable for drug discovery.  
 
Computational prediction of GPCR oligomerization [48] 

There has been a recent and prolific expansion in the number of GPCR crystal structures 
being solved: in both active and inactive forms and in complex with ligand, with G 
protein and with each other. Despite this, there is relatively little experimental 
information about the precise configuration of GPCR oligomers during these different 
biologically relevant states. While it may be possible to identify the experimental 
conditions necessary to crystallize a GPCR preferentially in a specific structural 
conformation, computational approaches afford a potentially more tractable means of 
describing the probability of formation of receptor dimers and higher order oligomers. 
Ensemble-based computational methods based on structurally determined dimers, 
coupled with a computational workflow that uses quantum mechanical methods to 
analyze the chemical nature of the molecular interactions at a GPCR dimer interface, will 
generate the reproducible and accurate predictions needed to predict previously 
unidentified GPCR dimers and to inform future advances in our ability to understand and 
begin to precisely manipulate GPCR oligomers in biological systems.  
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FMO-DFTB tool for rapid analysis of receptor-ligand interactions [49] 

The reliable and precise evaluation of receptor-ligand interactions and pair-interaction 
energy is an essential element of rational drug design. While quantum mechanical (QM) 
methods have been a promising means by which to achieve this, traditional QM is not 
applicable for large biological systems due to its high computational cost. Here, the 
fragment molecular orbital (FMO) method has been used to accelerate QM calculations, 
and by combining FMO with the density-functional tight-binding (DFTB) method we are 
able to decrease computational cost 1000 times, achieving results in seconds, instead of 
hours. We have applied FMO-DFTB to three different GPCR-ligand systems. Our results 
correlate well with site directed mutagenesis data and findings presented in the 
published literature, demonstrating that FMO-DFTB is a rapid and accurate means of 
GPCR-ligand interactions.  
 
FMO-PPi tool of inter-helical interactions of G-protein coupled receptors. 
G-protein coupled receptors (GPCRs) are the largest superfamily of membrane proteins. 
They regulate almost every aspect of cellular activity and are key targets for drug 
discovery. However, the molecular forces responsible for holding together the seven 
helices of the GPCR bundle and ensuring receptor stability, ligand binding and activation 
have not been identified. Even with crystal structures in hand, the strength and chemical 
nature of these forces cannot be characterised by visual inspection alone and therefore, 
accurate and reliable computational methods must be employed.  

6.3. Neuro-musculoskeletal Exemplar Research 
Despite a common perception that most neuro-musculoskeletal diseases are not life 
threatening, around 30% of the elders who face an osteoporotic fracture of the hip joint 
will die of related complications within 12 months; Amyotrophic Lateral Sclerosis has a 
lethal outcome usually within a few years; severe forms of Osteogenesis Imperfecta 
drastically reduce the life expectation of a child, etc. If we consider the quality of life, or 
the burden of disease that is a combination of quality and quantity of life, of the 10 top 
causes in Europe, four are neuro-musculoskeletal. The socioeconomic impact of lower 
back pain, arthritis, and osteoporosis, to name a few common conditions, is larger than 
that associated to any family of diseases.  
 
Because the primary function of the neuro-musculoskeletal system is mechanical in 
nature, it is not surprising that computational biomechanics has proved very effective in 
this field. In many of these applications, the models involved are of considerable 
complexity, with several nested levels strongly coupled altogether: molecules, cells, 
tissues, organs, organ systems, living beings and ecosystems. The fact that the scales are 
strongly coupled means that, when simulating a system, neglecting a scale can lead to 
inaccurate or plainly incorrect results. One feature of human physiology is its great 
variability among individuals. Such variability enforces the need for person-specific 
simulation models.  
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6.3.1. University of Sheffield: from tomography to bone simulations 

In Sheffield, the Computer Tomography to Strength (CT2S) has been successfully rolled 
out and tested on ShARC (Sheffield Tier-3), and applied to more than 110 patients so far. 
The service uses hip CT scans to generate personalised finite element models of the 
femurs, and ran simulations to predict the femoral strength in order to predict the risk 
of osteoporotic fracture. The service has recently been linked to the Sheffield Teaching 
Hospital, where a clinical staff can send a request for a set of patient CT scans to be 
analysed with a report being returned (within 1-2 days) to detail the risk factors. The 
research work has also resulted in publications [50,51].  
 

 
Figure 13. The range of sideways fall loading directions tested in the algorithm. Reproduced from Altai 

et al. (2019), Clinical Biomechanics. 
 
The CT2S workflow has employed in an in silico study that investigates the effect of 
ageing on bone strength. A bone loss law has been developed that describes how local 
volumetric bone mineral density (vBMD) decreases as the areal bone mineral density 
(aBMD) at the femoral neck (FN) decreases during ageing. Combined with the CT2S 
workflow, this framework leads to a determination of how fall orientation specific bone 
strength changes due to ageing, such as following a 5% decrease in FN-aBMD. We 
oberve that changes in bone strength are much smaller in magnitude and variability 
when predicted using bone loss law than when predicted by linear regression. This 
highlights that bone strength loss really depends on the individual’s bone shape and size 
and on how vBMD is distributed spatially within the bone. 
 
The CT2S service is currently being used by the Sheffield Teaching Hospitals to process 
patient data and predict the risk of osteoporotic fracture. The algorithm is also used by 
clinicians at the Sheffield Children’s Hospitals for research purposes in the application 
of child abuse. Other research users include the Flinders University (Australia) and the 
University of Wisconsin (USA). 
 

As part of the BoneDVC service, the Sheffield-based image processing software SHIRT 
has been rewritten in order to make it easier to parallelise on HPC system. The new 
software is called pFIRE. It has been deployed and tested on ShARC, ARCHER, 
MareNostrum. The software is available to download via Github with a set of dedicated 
tutorials to get users started: 
(https://insigneo.github.io/pFIRE/tutorial.html). 
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6.4. ELEM Biotech: a Startup Born From Within CompBioMed 
After a long period of administrative issues with the government, in July 2018, ELEM 
Biotech (http://www.elem.bio) was consolidated in Spain. It is a startup spun off from 
the Barcelona Supercomputing Center, co-founded by M. Vázquez and G. Houzeaux, 
both researchers of the aforementioned institution. The goal of ELEM is to provide 
supercomputer-based simulations of the cardiovascular system for medical devices 
manufacturers, pharmaceutical industry, CROs and academia.  
 

 
 

Figure 14. Landing page of ELEM Biotech. 
 
At this moment, ELEM is in the middle of a first funding round. Due to the importance 
of this round, our company is at the moment "under the radar", unveiling as little as 
possible information about its purpose and goals. 
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7. Conclusion 
This document reports the impact of the Modelling and Simulation scientific advances 
done within CompBioMed's WP2 on the biomedical research realm. It gives just a 
glimpse of all the research done not thanks just to the individual effort of each partner 
but to the combined expertise put together by CompBioMed. This is reflected by the 
variety of institutions taking part as co-authors in our published papers, the great 
majority in prestigious international journals. 
 
Research done in CompBioMed has covered the full range of the scales of a multi-scale 
problem as described in the introductory section. As stated above, The Centres of 
Excellence are there to explore innovative new ways of computing to face the challenges 
posed both by multiscale modelling and simulation and by the emerging high-end 
computing ecosystem. In ComBioMed we have worked on multi-scale strategies and 
their porting to new HPC architectures (among them notably HPC-Cloud 
infrastructures), specifically for the biomedical realm. We showed all the potential of 
such effort and how it can impact outside the bounds of the project, especially when 
planning to offer a service to all kind of healthcare-related stakeholders. We also 
demonstrate our ability to solve multiscale problems efficiently exploiting exascale 
resources.  
 
 
Going through the six original objectives for the project, as written in the Description of 
Work, this WP has contributed to all of them, especially in objectives 2, 5 and 6. Briefly, 
 

• Objective 2: "The second objective of our Centre of Excellence therefore will be to 
promote innovation in the field of computational biomedical modelling and 
simulation. [...]". Our research has been radically innovative and disruptive 
thanks to the combination of biomedicine, computational and mathematical 
expertise, together with all the technical advances we studied to pave the road 
to exascale computing. 

• Objective 5: "The fifth objective of our Centre of Excellence will be to engage with 
a range of industries across the entire healthcare value chain, from healthcare 
providers to pharmaceutical and medical device manufacturers, as well as ISVs 
and HPC system providers, to further the direction, uptake and exploitation of 
high performance computing within commercial organisations [...]." Our 
research deeply involved clinical, academic and industrial collaborators. 
Pharmaceutical Industry and Medical Devices Manufacturers are not just co-
authors of many of our papers but they become customers or pre-customers of 
the solutions produced in the project. In particular and related to the HPC 
providers, we have successfully explored the potential of HPC-based cloud 
computing to boost this realm, not only to do research but also to become a 
fundamental part in a new business model. 

• Objective 6: "The sixth objective of our Centre will be to engage closely with 
medical professionals through our partner hospitals and the wider community of 
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stakeholders, to promote (i) the tools, techniques as well as access mechanisms 
developed within our Centre; (ii) the wider field of computational biomedicine; 
(iii) the importance of computational modelling as an integral part of the decision 
making process within specific clinical fields." All of our research has impact on 
either clinical or industrial stakeholders (or both) as shown in this report. But 
regarding clinical, we went beyond, because we make a great effort to evangelise 
the clinical environment with the ultimate goal of giving access of the tools 
created directly to medical doctors at healthcare institutions. Of course, this is a 
very difficult mission, impossible to fully accomplish during the three years of its 
initial life, but at least we have established fantastic grounds to build things 
upon. 
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Appendix 
In this Appendix, we describe with deeper and more technical detail what was done at 
the three different Exemplar Research areas.  
 

Cardiovascular Exemplar Research 

Univesity of Geneva: "Digital Blood" on Palabos 

The focus of the Scientific and Parallel Computing Group at the University of Geneva is 
on high fidelity blood flow simulations. In more detail, we develop a high-performance 
computational framework for the simulation of fully resolved whole blood (Digital Blood 

in Massively Parallel CPU/GPU Systems) and additionally, we work on continuum 
models for flow diverting stents in 3d patient-specific intracranial aneurysms. 
 
Digital Blood in Massively Parallel CPU/GPU Systems 

We propose a novel high-performance computational framework for the simulation of 
fully resolved whole blood flow. The framework models blood constituents like red 
blood cells (RBCs) and platelets individually, including their detailed non-linear elastic 
properties and the complex interactions among them. This kind of simulations are 
particularly challenging because the large number of blood cells (up to billions) stand in 
contrast with the high computational requirement of individual constituents. While 
classical approaches address this challenge through simplified structural modelling of 
the deformable bodies (e.g., through mass-spring systems), the present framework 
guarantees accurate physics, desirable numerical properties through a fully featured 
FEM model and computational efficiency at the same order as the more simplified state-
of-the-art models.  
 
The required numerical performance is achieved through a hybrid implementation, 
using CPUs for the blood plasma and GPUs for the blood cells. 
Blood flow is involved in most of the fundamental functions of living organisms regarding 
health and disease. It is essential for the transport of oxygen, nutrients, waste products, 
as well as of infectious parasites and metastasizing tumor cells to tissues and organs. 
Blood is a complex suspension of RBCs, white blood cells and platelets, submerged in a 
Newtonian fluid, the plasma. The accurate modelling of the collective transport of the 
cells in the plasma is of paramount importance since it can help us decipher not well-
understood in vivo phenomena, e.g., formation of blood clots and margination of 
platelets. RBCs are disk-shaped cells, made of a deformable membrane containing a 
Newtonian solution of hemoglobin, whose role is to transport oxygen in the organism. 
They account for about 35-45% of the blood volume (this fraction is called the 
hematocrit), corresponding to roughly 106 RBCs per mm3. The deformability of RBCs is 
strongly linked to some pathological conditions, e.g., hereditary disorders (like 
spherocytosis, elliptocytosis, and stomatocytosis), metabolic disorders (like diabetes, 
hypercholesterolemia, and obesity), malaria, or sickle anemia. Platelets are small blood 
cells, with a concentration between 250x103 and 500x103 per mm3, at a ratio about 1 
platelet to 10 RBCs.  
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Most of the simulations at the spatial scale of millimeters ignore the particulate nature 
of blood because of the tremendous computational cost. On the other hand, in the 
state-of-the-art fully resolved whole blood simulations, the spatial scale remains very 
small, of the order of a few tens of micrometers. The suggested HPC framework is built 
toward the direction of simulating macroscopic flows, of the order of mm3 of whole 
blood, and offers to the user the possibility to address a large range of problems with 
clinical relevance. The constituents of this framework are the fluid solver, the solid body 
solver and the fluid-structure interaction (FSI) module. Our software is designed to be 
modular, in the sense that the components above can accommodate any state-of-the-
art numerical technique to solve the fluid or solid phase. 
 
As far as the simulation of the blood plasma is concerned, there exists a plethora of 
mature CFD approaches. For our simulations, we make use of the lattice Boltzmann 
method (LBM) which indirectly solves the Navier-Stokes equations. LBM uses a static, 
homogeneous lattice and the advancement of the fluid in time happens through 
collision and streaming operations. The above two processes alter the fluid populations 
which reside at every lattice site and constitute the degrees of freedom of the LBM. 
 
Fully resolved blood flow simulations are generally achieved by coupling the fluid solver 
with a moving boundary condition method. In recent years the Immersed Boundary 
Method (IBM) boundary condition has become the most widely used technique to 
model biological moving membranes, like the surface of red blood cells and other blood 
cells. IBM has become the standard method for biological membranes, thanks to its 
numerical robustness, simplicity of implementation and its versatility to the deployed 
fluid/ solid solvers. However, IBM has several drawbacks, mainly regarding accuracy and 
physical interpretation. On the other side, the classic non-IBM boundary condition for 
LBM, despite more accurate for non-moving boundaries, shows numerical fluctuations 
due to the boundary movement across the fluid grid nodes.  
 
To achieve high fidelity simulations more research is needed to gain more stable but 
theoretically consistent numerical methods. We are working on developing improved 
boundary conditions to go beyond IBM. The idea is to generalize classic boundary 
conditions for LBM to handle moving boundaries in a natural way. 
In a typical numerical framework for blood flow, the computational time is dominated 
by the structural solver for the deformable blood cells. We proposed a novel approach 
for deformable viscoelastic bodies based on the nodal projective finite elements method 
(npFEM) [1]. The expression “nodal” refers to the mass lumping technique, in which both 
the masses and the forces are lumped on the vertices of the discretized body, and 
therefore the finite elements act like generalized viscoelastic springs. The term 
“projective” stands for the use of specially designed potential energies that help us build 
a fast solver based on quasi-Newton optimization techniques. Our solver inherits the 
versatility and robustness of FEM and is almost as fast as plain mass-spring systems 
(current state-of-the-art solvers). It is characterized by strong mesh independence and 
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just one set of parameters, for any mesh resolution, can successfully describe the 
behavior of blood cells. 
 
For the LB and IBM parts, we use the open source library Palabos 
(http://www.palabos.org/), which stands for Parallel Lattice Boltzmann Solver. Palabos 
is a powerful open source high-performance LB solver that utilizes modern C++ and 
advanced Message Passing Interface (MPI) techniques. The npFEM part is written in 
C++/ CUDA in order to leverage the massive parallelism offered by the general-purpose 
GPUs. 
 
The developed numerical framework is intended to grow to be a general-purpose tool 
for first-principle investigation of blood properties. The current focus of our research is 
the study of platelet margination [2]. This is a very complex transport phenomenon, 
where the platelets are pushed toward the vessel walls while the RBCs form a denser 
structure away from them. While this is a well-reported phenomenon, there is no clear 
understanding of the real mechanisms behind it. Deciphering this property of blood 
could help design efficient drugs that prevent clot formation and help doctors detect 
various cardiovascular diseases at more ease. Our analysis is not only focused on healthy 
subjects but also on patients with various pathological conditions, e.g., diabetes, obesity 
and various other hereditary disorders (linked with the RBC/ platelet deformability and 
shapes). Figure 3 and Error! Reference source not found. present a pure shear flow 
(velocity on top and fixed bottom wall) for healthy and diabetic subjects, respectively, 
as produced using our HPC framework. In the latter case, the RBCs are more swollen and 
less deformable, leading to a faster deposition of platelets toward the vessel walls. 
Error! Reference source not found. presents margination after 1 second of physical 
time. 
 

 
Figure 15. Shear flow with healthy RBCs (in red) and platelets (in yellow) in a domain of 50 μm3 at 35% 

hematocrit. 
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Figure 16. After 1 second of physical time, most of the platelets are closer to the upper wall. This 

phenomenon is called margination. 
 

In the context of the current scientific goals (toward the simulation of macroscopic 
flows), the performance metrics of our parallel framework must be considered under 
the light of weak scaling. Indeed, the purpose of seeking more powerful computational 
resources is not to improve the resolution or increase the time span of the simulation, 
but to extend the physical volume of the blood considered in the model. Tests of the 
hybrid CPU/GPU code have shown that at a hematocrit of 35%, it is reasonable to assign 
each GPU approximately 500 blood cells, while the CPU cores on the same node treat 
the corresponding volume of blood plasma. In this case, the computational cost of the 
different parts of the code are balanced (no single part constitutes a bottleneck), and a 
single global iteration of the solver is carried out in less than 0.5 seconds, allowing to 
cover a significant physical time span in a few days of computation. An increase of the 
number of compute nodes translates into a proportional increase of the number of RBCs 
and blood plasma volume. Our research product delivers fully resolved whole blood 
simulations at unprecedented computational efficiency. Current state-of-the-art solvers 
report that the deformable blood cells solver constitutes over 95% of the total 
computational time, while our novel computational framework has dropped this time 
to about 15% of the total computational time. The proposed design deems suitable for 
the upcoming exascale supercomputers, allowing us to simulate physical domains and 
time spans that are yet to be explored. 
 
Toward the direction of validating the fidelity of our numerical models, we have 
developed a tight collaboration with Dr Karim Zouaoui Boudjeltia, biologist at ULB and 
CHU Charleroi, who is performing flow chamber experiments with whole blood of real 
patients. These experiments can be compared and designed in synergy with our 
numerical approach.  
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Given the high computational cost of fully resolved 3d blood flow simulations, a physical 
description of platelets deposition was introduced recently in Chopard et al. (2017) [2], 
by integrating fundamental understandings of how platelets interact in a numerical 
model, parameterized by five parameters. These parameters specify the deposition 
process and are relevant for a biomedical understanding of the phenomena. One of the 
main intuition is that these parameters are precisely the information needed for a 
pathological test identifying Cardio/cerebrovascular diseases (CVD) captured and that 
they capture the inter-individual variability.  
 
Following this intuition, we devised a Bayesian inferential scheme for estimation of 
these parameters, using experimental observations (from Dr Zouaoui Boudjeltia), at 
different time intervals, on the average size of the aggregation clusters, their number 
per mm2, the number of platelets, and the ones activated per μl still in suspension. As 
the likelihood function of the numerical model is intractable due to the complex 
stochastic nature of the model, we used a likelihood-free inference scheme approximate 
Bayesian computation (ABC) to calibrate the parameters in a data-driven manner. As 
ABC requires the generation of many pseudo-data by expensive simulation runs, we use 
a high-performance computing (HPC) framework for ABC to make the inference possible 
for this model. We consider a collective dataset of seven volunteers and use this 
inference scheme to get an approximate posterior distribution and the Bayes estimate 
of these five parameters. The mean posterior prediction of platelet deposition pattern 
matches the experimental dataset closely with a tight posterior prediction error margin, 
justifying our main intuition and providing a methodology to infer these parameters 
given patient data. The present approach can be used to build a new generation of 
personalized platelet functionality tests for CVD detection, using numerical modeling of 
platelet deposition, Bayesian uncertainty quantification, and high-performance 
computing. This ongoing project is realized through a tight collaboration with Dr. 
Ritabrata Dutta who is an Assistant Professor of Statistics in the University of Warwick.  
 
Continuum model for flow diverting stents in 3D patient-specific simulation of 

intracranial aneurysms 

An aneurysm is a weak spot on a blood vessel wall that causes a balloon-like bulging. 
Aneurysms tend to increase in size, and can be at risk of rupturing, leading to internal 
bleeding, with severe consequences. In particular, rupture of intracranial aneurysms is 
an event with a high mortality rate, and about one third of the survivors suffer from 
permanent neurological or cognitive deficits. For diagnosed aneurysms that are at risk 
of rupturing, different forms of treatment exist, one of which includes the insertion of a 
prosthesis into the artery, called a flow diverting stent. It has the shape of a tube, with 
a surface consisting of a very fine mesh of woven wires and is inserted to cover the neck 
of the aneurysm. The role of this device is to divert the main bloodstream from the 
aneurysm to the artery, while avoiding cutting off the aneurysm from blood supply 
altogether. The modification in the bloodstream pattern achieved by this procedure is 
capable of encouraging a blood clotting reaction in the aneurysm, which in its turn fills 
the aneurysm dome and prevents its rupture. 
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Computer simulation can be of use in many ways in this field of medical science. For 
example, the flow mechanics of the blood, and biological processes inside the blood, 
are simulated to promote a fundamental understanding of the factors involved in the 
blood clotting process of an aneurysm and propose new means of medical treatment. 
On the other hand, computer simulation is also a useful tool for day-to-day medical 
decision making, as it can be applied, for example, whether a given patient aneurysm 
could be successfully treated through a stent insertion procedure, and which stent 
model to use for optimal results. The idea is to use medical imagery to construct a virtual 
model for the artery and the aneurysm of a patient, and introduce, virtually, different 
flow diverting stents into this artery. Numerical models known under the name of 
Computational Fluid Dynamics are then used to simulate the mechanical properties of 
blood flow in the artery and test the ability of the flow diverter to encourage blood 
clotting.  
 
This type of simulation is highly complex and requires powerful computers. The difficulty 
arises in part from the fact that the stent surface consists of a very fine mesh, which 
needs to be accurately resolved in order to represent the blood flow through the wired 
network. The simulations can be computationally intensive to such an extent that 
several days are required to obtain the results. This is a prohibitively long time in the 
context of patient-specific, medical decision making: there exists a strong need for more 
efficient numerical models. We carried out a research activity to develop a faster 
simulation model for the blood flow across stents, which we have published in a three-
article series ([4, 5, 6, 7]). 
 
Model 
The idea behind our approach is that the flow diverting stent is modeled by means of a 
coarse- grained, macroscopic approach. This means in practice that the simulation can 
be carried out at a resolution which is too coarse to represent the details of the wired 
stent network. The stent is replaced by a force acting on the bloodstream which, 
although it has less structure than the stent itself, has largely the same effect on the 
blood flow than the original stent. 
 
Previous attempts to achieve such a model have been made by other authors, inspired 
by models in geophysical science to model porous media, such as porous rocks, through 
a continuum approach. The problem is that, while porous media generally have a certain 
thickness, stents have a very thin surface, and therefore exhibit properties that cannot 
be reproduced by conventional porous media models. For example, a stent, as opposed 
to a classic porous media, can deflect the flow quite sharply, creating a well defined 
relationship between the angles of the flow that reaches the stent and the flow that 
leaves it, respectively. 
 
To improve the quality of the model, we chose to base our work on a different 
theoretical framework, the field of so-called screen models. Screens are thin, porous 
surfaces of industrial usage of various origins, including for example woven, rigid fabric, 
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or perfo- rated plates. Theoretical models for a continuum modeling of such screens 
exist, and we adapted them to the field of flow diverting stents. The beginning of our 
investigations was of theoretical nature and was carried out in 2D simulations ([1, 2]). 
We showed that screen models had a potential for overcoming the weaknesses of 
porous media models, and we performed necessary conceptual adaptations and 
parameter fittings to create a new framework for Screen-model based Stent Models 
(SSMs). Our modifications of the original theoretical framework of screen models 
included the extension of these models to inhomogeneous media, and the insertion of 
the modelled objects into the complex environment of an artery with stent (screens are 
often placed in a more regular industrial environment, such as a rigid tube). 
 
After this fundamental investigation, we extended the SSM to 3D, and validated the 
model in real-life scenarios, using data (shape of the artery and aneurysm, profile of the 
pulsated blood flow, shape of the stent) from actual patients treated for aneurysms. 
 
Results 
Figure 4 shows the setup of three simulations that were carried out using real-life data 
from three different patients. In every case, a simulation was carried out at full 
resolution, rep- resenting the stent structure accurately (with a corresponding, very 
large computational cost), and using two continuum approaches, once our SSM, and 
once porous-media based stent model described in the literature. 
 
Figure 18 shows, for one of the patients, measurements of the blood velocity in four 
different points inside the aneurysms during one heartbeat, in the fully resolved case, 
and with the two models. This image illustrates a general observation, namely that our 
SSM (blue curve) imitates the results of the fully resolved simulation (black curve) much 
better than the porous media-inspired model (black curve). Furthermore, with the 
accuracy displayed in these figures, applying the SSM can reduce the computational cost 
of the simulation by a factor 10 or more, as compared to the fully resolved simulations. 
This is sufficient to provide a tool with a fast enough response time in the context of 
medical decision making. 
 

 
Figure 17. Blood vessel, aneurysm, and stent for the three investigated patient cases. 
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Figure 18. Measurements of the blood velocity in four different points inside the aneurysms during one 

heartbeat, in the fully resolved case, and with the two models. 
 
Summary of collaborations started or enforced thanks to the project  

• Laboratory of Experimental Medicine, Université Libre de Bruxelles & CHU 
Charleroi: Validation of our numerical frameworks with experiments on whole 
blood of real patients 

• Department of Statistics, University of Warwick: Machine Learning techniques 
for fitting parameters of our numerical models based on observed data from Dr 
Karim Zouaoui Boudjeltia 
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University of Amsterdam: HemoCell, the microscopic cellular library for supercomputers 

The developments were realised in three distinct areas. First and foremost, the 
advancements and optimisations were carried out on the open-source HemoCell (High 
pErformance MicrOscopic CELlular Library) simulation code. These allow larger domain 
sizes and longer simulated physical time-scales. Furthermore, improvements were made 
to the robustness of the mechanical model, i.e. the mechanical description of flowing 
cells, using uncertainty quantification (UQ). In tandem, similar UQ was applied to the in-
stent restenosis model. Finally, these improvements made new applications possible. 
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The cell level trafficking was explored in both healthy cases, and in cases with rigidified 
red blood cells, which serve as a model for diabetic disease. 
 
Simulation software improvements 

The improvements in the computational framework increased the computational 
performance significantly, and they can be categorised as improvements towards better 
load-balancing during the simulation execution, and towards more efficient inter-
process communication between the computing processes. In the following we explain 
the steps we took in these two directions. 
 
Load balance strategies for multi-physics problems in large-scale blood flow simulations  
The non-homogeneous distribution of computational costs is often challenging to 
handle in highly parallel applications, especially in multi-physics problems. In [1], the 
author studied the fractional load imbalance overhead in a high-performance biofluid 
simulation aiming to accurately resolve blood flow on a cellular level, using a 
methodology based on fractional overheads. In general, the concentration of particles 
in such a suspension flow is not homogeneous. Usually, there is a depletion of cells close 
to walls, and a higher concentration towards the centre of the flow domain, causing a 
time-dependent and potentially high computational work imbalance. We perform 
parallel simulations of such suspension flows. The emerging non-homogeneous cell 
distributions might lead to strong load imbalance, resulting in deterioration of the 
parallel performance. The authors formulate a model for the fractional load imbalance 
overhead, validate it by measuring this overhead in parallel lattice Boltzmann based cell-
based blood flow simulations, and compare the arising load imbalance with other 
sources of overhead, in particular the communication overhead. They find a good 
agreement between the measurements and our load imbalance model. We also find 
that in our test cases, the communication overhead was higher than the load imbalance 
overhead. However, for larger systems, we expect load imbalance overhead to be 
dominant. Thus, efficient load balancing strategies should be further developed.  
 

 
Figure 19. Haematocrit distribution for the channel flow case with different numbers of Red Blood Cells 

(N), average haematocrit H = 38%. ‘small’ (left), ‘intermediate’ (middle), and ‘large’ (right) systems. 
Extracted from [1]. 

 
Increasing MPI communication efficiency for the HemoCell codebase (UvA) 
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For HemoCell we have also looked into improving the efficiency of the communication 
between MPI processes. The communication of the cell material information between 
the processes was one on the major bottlenecks of the simulation, therefore, we 
targeted this area by restructuring the communication pattern and restricting 
information exchange to data that is strictly necessary. Improving the efficiency in this 
context means that we altered the communication structure, but not the resulting 
computation. We added a new step in the communication where instead of the fixed 
communication envelope we use a pre-compiled list of necessary information. This 
presents a minimal computational overhead that is counterweighted by the gain in 
reduced communication time.  
 
The performance improvement results for simulations like those of Figure 19, are shown 
in Figure 20 and Figure 21. By reducing the amount of data communicated and 
improving on the used algorithms and data structures we managed to get an overall 
improvement of approx. 100% in wall clock time, and in the strongest scaled case we 
get an improvement of 350%. Furthermore, the strong scaling properties are improved 
as well. 
In practical scenarios this roughly means that if we simulate blood flow in microfluidic 
chip for 1 s, the computation time is reduced from 10 days to around 3 days.  

 
Figure 20. Performance of HemoCell before optimization. The blue fluid bar encompasses 

communication as well as computation. The total time per iteration is written in black. 
 
 



  D2.4 Report on the Impact of Modeling and Simulation within  
Biomedical Research as enabled by CompBioMed 

 

PU Page 44  Version 1.0 
 

“This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Grant Agreement No 675451“ 

 

 
 

Figure 21. Performance of HemoCell after the optimization of the material communication. Both 
performance graphs are generated on different supercomputers top: SuperMUC, bottom: 

Marenostrum, therefore the difference between wall-clock times might not be due to optimization, 
however, this should not affect the parallel efficiency numbers (green percentages). 

 
 
Model developments 

 
Inverse Uncertainty Quantification for HemoCell 
Uncertainty Quantification (UQ) is an indispensable part of model certification process, 
where uncertainty in the output of the model is estimated in order to analyse 
comprehensively the model prediction (forward UQ) and uncertainty in the model input 
parameters is evaluated in order to access their realistic distributions (inverse UQ) [2]. 
In the present work, inverse UQ was applied to the HemoCell model of blood flow at the 
cellular level [3], where uncertainties in the link force coefficient (κl), bending force 
coefficient (κb) and viscosity contrast (Λ) were estimated. Additionally, two cases of 
healthy and treated red blood cells (RBC) were implemented for the inverse UQ study. 
 
In order to analyse the parameters’ identifiability, the Sobol sensitivity analysis method 
[4] was applied. The results show that the link force coefficient and viscosity contrast 
are both identifiable, whereas identifiability issues arise for the bending force 
coefficient. This parameter was still included to the inverse UQ analysis, however, in 
future work must be analysed using an output parameter, which is more sensitive to its 
value. 
 
The results of the inverse UQ using the Transitional Markov Chain Monte Carlo algorithm 
[5] predict the following mean values of the analysed parameters: κl ≈ 40 ± 5 kBT, Λ ≈ 
5.2 ± 1.8 and κb ≈ 275 ± 6 kBT for the healthy RBC data, and κl ≈ 117.5 ± 2.5 kBT, Λ ≈ 2.6 
± 1.5 and κb ≈ 320 ± 10 kBT for the treated RBC data. Forward UQ with obtained 
distributions of the input parameters is shown in Figure 22 for both healthy and treated 
RBC cases. It was concluded that the inverse UQ method has yielded values of the model 
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parameters, with which the model predictions of the elongation index match well the 
available experiential data. 
  

 
Figure 22. Forward uncertainty propagation in the HemoCell model with the obtained distributions of 

the input parameters from the inverse Uncertainty Quantification analysis. 
 
 
Uncertainty Quantification for the in-stent restenosis model 
An important aspect of cardiovascular disease is the behaviour of the affected vessel 
after medical intervention. One important medical treatment is stenting: inflating a 
balloon inside the affected vessel to open it up and placing a metal mesh called a stent 
to keep it open. However, this treatment damages the vessel wall, which causes growth 
and proliferation of smooth muscle cells (SMCs) in the wall. The dynamics of this process 
are largely governed by the blood flow dynamics in the vessel and by endothelium 
recovery in the stented area. If the growth is excessive, the vessel can re-narrow and 
reduce blood flow again, potentially warranting another intervention. This makes it 
important to study and understand the growth process, and one way to do it is by 
computational modelling.  
 
A multiscale model of tissue growth in stented arteries, or in-stent restenosis (ISR) 
model, has been previously built [8,9]. However, to make the model actionable and 
usable for clinically relevant predictions and in silico clinical trials, it is important to 
understand the relative importance and effects of the model inputs, based on 
experimentally measured parameters, on the predictions made by the model. To this 
end, sensitivity analysis (SA) and uncertainty quantification (UQ) were performed for the 
ISR model. Endothelium regeneration dynamics, flow velocity and stent deployment 
depth were studied by performing a quasi-Monte Carlo UQ [6]. To reduce the 
computational costs, the 2D version of the model was used. The UQ and SA showed that 
the endothelium regeneration time and the flow velocity in the vessel are the most 
influential model parameters, so obtaining accurate values for them should be a priority 
before using the model for in silico clinical trials. Additionally, a methodology for semi-
intrusive UQ was proposed, which can be used to reduce computational costs, so that 
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UQ can be performed for the 3D version of the model as well. The results of semi-
intrusive UQ were close to the reference quasi-Monte Carlo UQ predictions, but the 
semi-intrusive UQ results were systematically biased towards lower values of tissue 
growth (see Figure 23) [7]. This bias can be eliminated, however, by enhancing the 
metamodels used for semi-intrusive UQ.  
 

 
Figure 23. Comparison of the estimated mean and standard deviation (SD) by the quasi-Monte Carlo 

(QMC) method, semi-intrusive metamodelling methods by data-driven (DD meta I and II) approach and 
by simplified physics (phys meta). 

 
 
Framework application 

 
Studying the diffusivity of RBCs and the diffusivity and margination of platelets 
The radial distribution of cells in blood flow inside vessels is highly non-homogeneous. 
This leads to numerous important and unique properties of blood, and has many clinical 
implications. 
 
The mechanisms shaping these distributions are not fully understood. In this section the 
investigation of the motion of cells in a straight vessel section is summarised. Such 
investigation is made possible by the abovementioned improvements in the simulation 
code and the material model. The motion of cells is governed by a variety of 
hydrodynamic interactions and cell-deformation mechanics. Properties, such as the 
effective cell diffusivity, are therefore historically difficult to investigate in flows other 
than pure shear flows, as the various arising effects are difficult to separate. To this end, 
several single-cell, cell-pair, and large-scale many-cell simulations were performed using 
a validated numerical model. Apart from the single-cell mechanical validations, the 
arising flow profile, cell free layer widths, and cell drift velocities were compared to 
previous experimental findings. The detailed results of the investigation can be found in 
reference [10]. 
 
The motion of the cells at various radial positions and under different flow conditions 
was extracted, and evaluated through a statistical approach (Figure 24). The evaluation 
of particle trajectories showed that the margination of platelets cannot be the net result 
of gradients in diffusivity, as it was assumed multiple times in the literature. However, 
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the margination mechanism is strongly linked to the gradient of the hematocrit level. 
Finally, the investigation showed that platelets marginate only until the edge of the red 
blood cell distribution and they do not fill the cell free layer. 
 

 
 

Figure 24. Platelet (yellow disks) distribution projected to a vessel cross-section at different haematocrit 
levels. The red ghosts show the red blood cells. The top line shows the initial cell positions, while the 

bottom line shows the positions after 1.3 s of flow. The columns depict various haematocrit levels. The 
platelets migrate to the outer layer of the flow at a few percent haematocrit already, outlining the 

importance of cell-cell interactions. 
 
 
Studying the influence of red blood cell deformability with HemoCell 
Whole blood is a suspension of cells, red blood cells (RBCs), platelets, and white blood 
cells, suspended in a protein rich plasma that collectively has a non-Newtonian rheology. 
RBCs are the most numerous blood cells and due to their deformability and bi-concave 
shape the RBC contributes significantly to the complex rheology of whole blood. 
Pathologies have been found to affect the deformability of the red blood cell such as 
Diabetes, Sickle Cell Anemia [11], and HIV. In this research we use HemoCell (High 
pErformance MicrOscopic CELlular Library) which is a numerical model of blood flow at 
the cellular level [3] to probe the effects of RBC deformability on flowing whole blood 
through micro vessels with diameters ≤300 !".  
 
This study begins at the single cell level with simulations of two colliding RBCs of varying 
membrane stiffness. RBC membrane stiffness of the HemoCell model is matched with 
ektacytometry measurements from chemically (tert-Butyl hydroperoxide (TBHP)) 
stiffened RBCs [12]. We observe from single cell simulations that in a collision between 
a deformable and stiff RBC that the stiff RBC is pushed away from the original positon 
more compared to the deformable RBC. 
 
The results of the single cell collisions inform larger scale bulk flow simulations of whole 
blood (Figure 25). We perform simulations of flowing whole blood through a micro 
vessel, with different mixtures of stiffened RBCs. We observe with an increase of the 
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number of stiff RBCs present in flow that platelet populations at the vessel wall 
decrease. This may have important implications for patients with pathologies that 
effects the deformability of RBCs as it may hinder their ability to properly form blood 
clots. 
 

 
Figure 25. Displacement of RBCs from their original position resulting from single RBC collisions with 
varying membrane stiffness. The top row are homogenous RBC collisions with membrane stiffness 

increasing from left to right (red:healthy, green:stiff, blue:stiffest). The bottom row are heterogeneous 
collisions between a healthy RBC and a stiff RBC. 
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University College London: HemeLB for 3D flows in large sparse geometries 

Using HemeLB, a highly optimized lattice-Boltzmann solver for haemodynamic flow in 
large, sparse 3D geometries, our research during the course of the CompBioMed project 
has focused on two strands - one for automated, validated and patient specific 
simulation, and the other on the computational optimization work required to best 
exploit coming exascale infrastructure. 
 

Magnetic Drug Targeting (MDT) capabilities were implemented in HemeLB, allowing the 
dynamics of paramagnetic iron-oxide particles (in practice often used as a drug delivery 
method) to be observed in a geometry obtained from an MRI scan of a patient’s brain 
[1] (Figure 26). This model allows exploration of the effect of changes in particle size, 
magnet strength and placement, and patient physiology (heart rate, etc) on the delivery 
to a given target site (e.g. a tumour site) for a patient specific vascular system. In this 
multiscale model, the inlet velocity profiles for the 3D region are generated using a 1D 
Navier-Stokes solver representing the rest of the human body. 
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Figure 26. A small section of the simulated Circle of Willis geometry, showing the paramagnetic drug 
particles passing through a (pink) target region under the influence of a (blue) magnetic dipole. 

 
In another study [2] we collaborated with the National Hospital for Neurology and 
Neurosurgery (NHNN) in London, to obtain Transcranial Doppler (TCD) measurements 
of blood velocity in the Middle Cerebral Artery (MCA) of a stroke patient, along with CT 
scan data allowing the 3D vasculature (of that same patient) to be generated for use in 
HemeLB simulations. A simple validation study was then carried out by comparing the 
velocity profiles from simulations against those measured by TCD at multiple points 
along the MCA. We also considered the sensitivity of the simulations to changes in 
rheology model (Newtonian vs shear-thinning) and in mesh resolution. 

 
Figure 27. Top left: The Middle Cerebral Artery, showing the several depths of measurement planes 

carried out with the transcranial doppler device. Top right: A comparison of the peak velocity profile in 
the simulated and (in vivo) experimentally obtained cases. Bottom: Cross-sectional plots showing 

deviation in velocity field for differing choice of rheology model. 
 
 
In order to use HemeLB in the clinic, a large amount of work was dedicated to fully 
automating the entire pipeline, from CT scan to simulation to visualisation. In particular, 
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real-time visualization is sought after for clinicians, in part due to the short timescales 
of treatment (Figure 27). We carried out this work as part of a larger collaboration 
project with Hamad Medical Corporation and Qatar University in Doha, Qatar. This work 
is still on-going, but some early publications are being produced [3]. These efforts are 
heavily focused on the patients, in terms of patient-specificity of data, and on interaction 
with the clinician (such as Interventional Radiologists) to determine the best metrics and 
visualizations to communicate useful information about the simulation results (Figure 
28). 
 
 

 
Figure 28. Left: The portable workstation running the automated pipeline. Right: A multi-view 

visualisation window. The 3D display of the results can be illustrated in two different modes: 1) multi-
view window which is depicted in this Figure; 2) full separate window for each lattice property. The 
multi-view window splits into 4 sub windows; one for the visualization instruction as shown in the 

bottom left and three for the velocity, pressure and shear stress. 
 
With regards to the computational efficiency of HemeLB, and coming exascale 
resources, we have expended significant effort towards memory optimization and load 
balancing, leading to strong scaling up to hundreds of thousands of cores. For example, 
HemeLB now scales very well up to 256000 cores on the Blue Waters supercomputer 
(Figure 29). 
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Figure 29. HemeLB strong scalability up to 256000 cores on the Blue Waters supercomputer. 

 
Thanks to these performance improvements, we are now tackling simulations of the 
entire human vasculature (Figure 30). Our current work concerns coupling of the full 
human arterial tree to the corresponding venous tree, as well as to a full 
electrophysiologically detailed simulation of the human heart (the Alya code developed 
at BSC). 
 
Coupling HemeLB is necessary to allow for the simulation of more complicated 
anatomical features. The self-coupling of HemeLB has been structured to allow for flow 
in major vessels to be resolved whilst treating capillaries as a sub-scale feature. In this 
process, a map is created linking the outlets of the first HemeLB instance and the inlets 
of the second. Scale factors are applied to both averaged velocity and pressure as they 
are passed between these locations and used to reconstruct the boundary conditions 
on the opposing instance. These factors are chosen such that the fundamental flow 
physics is conserved between the two simulations. It is also believed that this coupling 
strategy will prove to be advantageous for efficient performance on the architectures of 
some of the next generation supercomputers. Focusing on SuperMUC-NG in particular, 
its CPU cores are clustered into separate islands with slower communication channels 
between them. Being able to couple multiple instances of HemeLB would allow for 
components of a complex geometry to be simulated on an individual island with inter-
island communication being streamlined to only the minimum boundary information 
required. 
 



  D2.4 Report on the Impact of Modeling and Simulation within  
Biomedical Research as enabled by CompBioMed 

 

PU Page 53  Version 1.0 
 

“This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Grant Agreement No 675451“ 

 

 
Figure 30. Full human arterial tree and venous tree used in the HemeLB-HemeLB coupling code. 

 
 
References for this section: 

[1] Patronis, A., Richardson, R. A., Schmieschek, S., Wylie, B. J., Nash, R. W., & Coveney, 
P. V. (2018). Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial 
Vasculature. Frontiers in physiology, 9, 331. 
[2] Groen, D., Richardson, R. A., Coy, R., Schiller, U. D., Chandrashekar, H., Robertson, 
F., & Coveney, P. V. (2018). Validation of patient-specific cerebral blood flow 
simulation using transcranial Doppler measurements. Frontiers in physiology, 9. 
[3] Esfahani, S. S., Zhai, X., Chen, M., Amira, A., Bensaali, F., AbiNahed, J., ... & Coveney, 
P. V. (2019). HEMELB Acceleration and Visualization for Cerebral Aneurysms. arXiv 
preprint arXiv:1906.11925. 

 

Lifetec: AngioSupport for coronary artery disease 

Cardiac teams in the larger hospitals daily discuss the treatment of multiple patients 
with coronary artery disease (CAD). These patients have one or multiple severe 
occlusions in the coronary arteries which are complicated cases and requires the 
expertise of the cardiac team. For each patient a treatment plan is defined, typically 
consisting of coronary artery bypass graft (CABG) surgery or percutaneous coronary 
intervention (PCI). The decision between these treatments is currently based on 
studying coronary angiograms and the experience of the cardiac team. However, in case 
of multiple occlusions, diffuse coronary disease or complicated vasculature, choices in 
the position, length or diameter for a CABG or PCI is challenging.  
 
To help the cardiac team in this process, LifeTec Group talked with Pim Tonino, 

intervention cardiologist at Eindhoven Catharina Hospital, about a possible numerical 
model that can assist in this decision making. Together with Frans van de Vosse, 
professor of the biomedical engineering department of Eindhoven university of 
technology, LifeTec Group started the development of a clinical tool that could assist the 
cardiac team in treatment planning for each patient. Therefore, AngioSupport is 
developed; an interactive tool to predict the outcome of CABG or PCI to support clinical 

decision making of coronary interventions. 
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Figure 31. Obtaining the 3D vessels by using the 2D images created during coronary angiography. 

 
For each cardiac team meeting, the patient specific coronary vasculature is needed. 
AngioSupport will show the full 3D coronary vasculature to assess the stenotic areas. For 
this step, Lifetec is working together with Pie Medical Imaging. Their CAAS software is 
able to compute the 3D vessels by using the 2D images created during coronary 
angiography (Figure 31). With their help, we are able to create a full coronary 
vasculature from these coronary angiograms. This allows us to visualize the CAD in every 
artery and to show stenotic areas by automatic stenosis recognition. 
 
To compute the blood flow and pressure inside the coronary tree, a 1D wave 
propagation model is implemented in AngioSupport. The research from the biomedical 
engineering department at the Eindhoven University of Technology is used. We 
adapted the models to the requirements of AngioSupport, for example to achieve a fast 
computational time and to use the available patient data. AngioSupport can show the 
Fractional Flow Reserve (FFR) through the full coronary vasculature (Figure 32). This can 
help the cardiac team, since the FFR is used to indicate whether a region has insufficient 
blood supply and therefore needs revascularization.  
 

 
Figure 32. LifeTec Group’s AngioSupport interface: computing the virtual FFR. 
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Since AngioSupport is designed to be used during a cardiac team meeting, the heart 
team should be able to access the 1D wave propagation simulations themselves. We 
therefore designed an interface in cooperation with Dr. Pim Tonino. This interface 
allows the cardiac team to see the 3D coronary vasculature and the recognised stenotic 
areas. The cardiac team can add then the patient data and start the simulation to see 
the FFR throughout the coronaries. 
 

 
Figure 33. LifeTec Group’s AngioSupport interface: the virtual intervention outcome. 

 
AngioSupport then also allows the cardiac team to perform an intervention (Figure 33). 
The interface enables them to virtually place a stent or place a bypass graft. 
AngioSupport then shows the result of these interventions within seconds. The cardiac 
team can then easily compare the results, which helps them in their coronary 
intervention planning. By allowing the cardiac team to place the stent or bypass 
themselves in the patient specific coronary arteries, they are able to test the planned 
intervention virtually. This makes AngioSupport a valuable tool to justify a treatment 
plan. With the use of AngioSupport, the cardiac team is now able to use the wave 
propagation models as developed at the Technical University of Eindhoven. Through the 
AngioSupport interface, the cardiac team can start their own CFD simulations, without 
the extensive knowledge needed to build these CFD tools. 
 
AngioSupport consists of combined research from the Eindhoven University of 
Technology. This resulted in many elements in de model, such as the 1D line elements, 
coronary windkessel elements, junction elements and anastomosis elements, which 
resulted in a large amount of parameters. To investigate the impact of these parameters, 
a large sensitivity analysis was performed with the help of SURFsara. By using their high 

performance computing center, a large amount of simulations were performed to 
investigate the impact of each parameter. This allowed us to prioritize which parameters 
needs to be connected to patient data and improve the reliability of the AngioSupport 
simulations.  
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With help from Dr. Simon Dello, cardiologist in Catharina Hospital, we received patient 
data from 75 patients with a complicated coronary artery disease. These patients were 
all discussed during a heart team meeting. At LifeTec Group, this retrospective data was 
used to test the feasibility and reliability of AngioSupport. The model was able to create 
a 3D coronary vasculature of the patient and to automatically recognize the stenotic 
areas of each patient. The numerical model was also able to calculate the FFR for each 
patient within seconds and the cardiologist was able to virtually perform placing a stent 
or a bypass. Although some improvement is still needed in calculating the FFR virtually, 
the cardiologist showed interest in using the model. LifeTec Group also visited the 
Amsterdam Medical Center and the Erasmus Medical Center to give a live 
demonstration of AngioSupport. Both medical centers showed large interest in the 
model and the assist it gives for treatment planning. Especially the close relationship 
between pressure, flow and resistance can be investigated easily with AngioSupport.  
 
AngioSupport could therefore be used during clinical decision making, but also for the 
training of cardiologists. By being able to virtually perform interventions, the cardiac 
team can directly see the effect of geometrical changes in pressure and flow 
distribution. This could increase the insight in coronary hemodynamics, especially for 
cardiologist still in training. Complicated cases can be simulated in AngioSupport and the 
result of different interventions can be simulation. LifeTec Group is exploring this 
possible new business line together with cardiologists in Catharina Hospital in 
Eindhoven. 
 
The involvement of LifeTec Group in CompBioMed also started the exploration of more 
of simulation work at LifeTec Group. Since many companies visit LifeTec Group during 
their preclinical development, the use of numerical simulation could be a useful 
addition. For instance the use of 3D CFD simulations combined with fluid structure 
interactions can greatly improve the insight in design choices. As for companies which 
are for instance developing heart valves, vascular stents or heart assist devices. LifeTec 
Group is currently starting to build this simulation team at LifeTec Group, to also have 
3D computational fluid dynamics simulations and to connect this with fluid structure 
interaction models. LifeTec Group’s close work with experimental work gives them a 
great advantage, since they these companies visit the experimental set up at LifeTec 
Group. This gives more insight in numerically simulating these user cases and helping 
them in preclinical development. For the computational fluid dynamics software, LifeTec 
Group is exploring the use of Alya developed at Barcelona Supercomputing Center. 

LifeTec Group already is already supervising projects with students from Technical 
University of Eindhoven which are working on 3D CFD simulations. 
 
For instance, the development of a graft which is used to perform a coronary artery 
bypass graft around a coronary occlusion could be helped by a combined experimental 
and numerical platform. This graft consists of a platinum ring which can be attached to 
the coronary artery without suturing. This procedure can be experimented on the 
beating heart platform at LifeTec Group. This set up will show the possible downsights 
of the design. However, with CFD simulations, LifeTec Group could take this a step 
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further. By using the experimental set up and simulating this numerically, small changes 
in design can be investigated. LifeTec Group could then simulate many design changes 
which could increase the insight in this device and even give advice for improvements 
of this device. This would be a great benefit for companies still in preclinical trials. 
 
It is worth to remark the translational character of AngioSupport. It is a clinical decision 
tool to support the cardiac team with treatment planning for patients with coronary 
artery disease (CAD). Using AngioSupport, stenoses as well as their severity are easily 
revealed within seconds by computation of blood flow and pressure inside the coronary 
arteries. The coronary angiograms are used as input, which are already made for these 
patients. Clinicians can perform multiple interventions virtually and compare the 
predicted outcome of each intervention. AngioSupport therefore allows the heart team 
to use the numerical models developed at the Technical University of Eindhoven. The 
interface developed for AngioSupport is created with cardiologists and made for their 
daily use. Patient data of 75 patients was used in the model and tested for feasibility and 
reliability in clinical practice. 
 
Finally, it is also worth to be mentioned that CompBioMed has brought an important 
impact on Lifetec business, especially on three lines: a tool for cardiac team for planning 
coronary interventions, a tool for training application for cardiologists and a tool for CFD 
simulation studies, in combination with fluid structure interaction. 
 
Summary of collaborations started or enforced thanks to the project  

• Technical University of Eindhoven: Building the numerical model used in 
AngioSupport. Many new possibilities for bachelor, master or PhD students for 
research to improve AngioSupport.  

• Catharina hospital Eindhoven: the development of AngioSupport and closer 
contact with clinical practice. 

• Pie Medical Imaging: The collaboration in AngioSupport and the segmentation 
of a full coronary vasculature. A business could be started together with Pie 
Medical for possible spin-out opportunities. 

 

University of Sheffield: OpenBF for vascular networks 
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Figure 34. Diagram of the OpenBF cerebral vascular network model. 
 

OpenBF is a 1D hemodynamics network model developed at the University of Sheffield. 
Cerebral vasospasm (CVS) is a life-threatening condition that occurs in a large proportion 
of those affected by subarachnoid haemorrhage and stroke. CVS manifests itself as the 
progressive narrowing of intracranial arteries. It is usually diagnosed using Doppler 
ultrasound, which quantifies blood velocity changes in the affected vessels, but has low 
sensitivity when CVS affects the peripheral vasculature. In a recently published study we 
aimed to identify alternative biomarkers that could be used to diagnose CVS [1]. For this 
we used a verified and validated 1D modelling approach, openBF, to describe the 
properties of pulse waves that propagate through the cardiovascular system (Figure 34), 
which allowed the effects of different types of vasospasm on waveforms to be 
characterised at several locations within a simulated cerebral network. The model has 
been previously quantitatively validated with predictions from other models and echo-
Doppler velocity measurements from vasospasm patients. A sensitivity analysis 
empowered by the use of a Gaussian process (GP) statistical emulator was then used to 
identify waveform features that may have strong correlations with vasospasm. The use 
of GP statistical approaches was previously analysed and validated against more 
traditional Monte Carlo analyses using cloud supercomputing systems available in the 
CompBioMed consortium [2]. In the sensitivity analysis model inputs for lumen radius, 
length, Young’s modulus and peripheral resistances of each vessel were initialised with 
typical reference values and then changed within ±50% of their reference values to then 
analyse the effect of these changes on waveform features that would be easy to extract 
in the clinical context. These consisted of minimum, maximum, and time average in one 
cardiac cycle of velocity and pressure waveforms, along with their first time derivatives. 
In Figure 35 each plot shows sensitivity indices for each input. The hatched section of 
the bars shows the first-order sensitivity indices (measuring contribution to variance in 
each model output from variance of each model input) , and the plain sections the total-
order indices (measuring contribution to variance in each model output from the 
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interaction of one input with other inputs). Thus, the height of the hatched bar shows 
the biomarker sensitivity to a single input and the plain section the sensitivity to multiple 
inputs. 
 

 
 

Figure 35. Sensitivity indices for u (velocity) and P (pressure) biomarkers against variations of the model 
input parameters (R0 lumen radius, ℓ vessel length, E Young’s modulus, Rp peripheral resistance, 

and Cp peripheral compliance).  
 
A GP emulator can treat inputs and outputs explicitly as uncertain quantities, and so by 
determining the proportion of output variance that could be accounted for by each 
uncertain input we were able to calculate variance-based sensitivity indices for each 
input and output of the model. This was useful to identify those waveform features that 
are sensitive to vasospasm (changes in vessel radii) but less sensitive to physiological 
variations in the other model parameters. Using this approach, we showed that the 
minimum rate of velocity change can detect presence of vasospasm from an early stage 
(10% in diameter reduction) and be more effective than blood velocity for stratifying 
typical manifestations of vasospasm and its progression. In the wider context, the 
present study describes the use of sensitivity indices, combined with modelling, as a way 
to identify effective biomarkers, which is a novel approach that has the potential to 
result in clinically useful tools.  
 
The same approach has been further developed and applied to the simulation of 
endovascular removal of blood clots (thrombectomy) as a potential clinical tool to 
investigate typical clinical scenarios for treatment of ischaemic stroke. 
 
References for this section 

[1]. A. Melis et al., “Improved biomechanical metrics of cerebral vasospasm identified 
via sensitivity analysis of a 1D cerebral circulation model,” J. Biomech., 2019. 
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[2]. A. Melis, R. H. Clayton, and A. Marzo, “Bayesian sensitivity analysis of a 1D vascular 
model with Gaussian process emulators,” Int. j. numer. method. biomed. eng., vol. 33, 
no. 12, 2017. 

Barcelona Supercomputing Center and University of Oxford: Alya Cardiac Computational 
Model 

Human-based computer models and simulations are a fundamental asset of biomedical 
research. They augment experimental and clinical research through enabling detailed 
mechanistic and systematic investigations. Owing to a large body of research across 
biomedicine, their credibility has expanded beyond academia, with vigorous activity also 
in regulatory and industrial settings. Thus, human in silico trials are now becoming a 
central paradigm, for example, in the development of medical therapies [1]. 
 
Human cardiac physiology is one of the most advanced areas in physiological modelling 
and simulation. Current human models include detailed information on the ionic 
processes underlying the action potential such as the sodium, potassium and calcium 
ionic currents, exchangers such as the Na/Ca exchanger and pumps such as the Na/K 
pump. They also include representation of the excitation-contraction coupling system, 
which modulates the calcium transient and, in turn, myocyte contractility. Human 
cardiac models are also multiscale, both spatially and temporally, and integrate 
information across the subcellular, cellular, tissue, and organ levels [2]. 
 
Here we showcase the human multiscale models we developed through the integration 
of multimodality datasets, including: ionic current measurements; action potential and 
calcium transient recording; active force measurements; magnetic resonance and 
computed tomography images; electrocardiograms. Human data were used at multiple 
stages of model development, for calibration and also to perform independent 
validations at different scales.  
 
Examples of how these models have been used to characterise adverse outcome 
pathways and identify preclinical and clinical biomarkers for cardiotoxicity are included, 
together with an investigation of the underlying physiological mechanisms relevant to 
cardiotoxicity in specific (patho)physiological conditions. Thanks to high performance 
computing facilities we were able to conduct extensive computer simulation studies of 
cardiac electromechanical activity using the multiscale models for a range of reference 
compounds leading to a variety of cardiovascular outcomes. 
 
From the engineering point of view, the heartbeat can be decomposed in three different 
physical problems. In the muscle, the electrical stimuli propagates along the cardiac 
myocytes, which contract deforming the macroscopic geometry. This produces a change 
of the volume within the cardiac chambers that are filled with blood. Ventricular 
computational fluid dynamics (CFD) has to be solved in order to compute the pressure 
produced by the blood against the endocardium. Since we can decompose the problem 
in these three sub-problems, we can say that the heartbeat is a fluid-electro-mechanical 
phenomenon. Each one of these sub-problems is computationally demanding by itself. 



  D2.4 Report on the Impact of Modeling and Simulation within  
Biomedical Research as enabled by CompBioMed 

 

PU Page 61  Version 1.0 
 

“This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Grant Agreement No 675451“ 

 

On the one hand, non-linear ordinary differential equations (ODEs) governs the 
electrical propagation and an exponential orthotropic material models the myocardium 
solid mechanics. On the other hand, large deformation occurs in the fluid domain with 
step changes in the velocities. When these problems are coupled, the computational 
cost multiplies making supercomputer resources a requirement to solve the proposed 
model. 
 
Physicians evidence this tight three-way coupling on a daily basis. The ECG, which 
measures electrical potentials in the skin of the patient, can be used to diagnose 
mechanical pathologies like myocardial hypertrophy. In the same way, a reduced 
ventricular output can have an electrical or mechanical etiology. Electrophysiology or 
electromechanical models are useful when analyzing localized events in the heart. But, 
if a more extensive overview in the heartbeat phenomena is expected, it is required to 
increase the model complexity including the blood fluid dynamics. Great advances have 
been achieved in heart modelling from the first electrical wave propagation simulations. 
Current models are incremental evolutions from previous, slightly simpler stages. 
Creating a fluid-electro-mechanical model of the heart is a new required stage to 
improve heart models.     
    
Each one of the independent problems (electrophysiology, solid mechanics and fluid 
dynamics) is, by itself, computationally demanding. When these problems are coupled, 
computational costs grows more than the sum of the independent parts. For this reason, 
efficient and scalable solvers for each problem are required, together with a proven 
performance for the coupled model.   
 
The Alya Cardiac Computational Model and its numerical and implementation 

aspects 

 
For the fluid-electro-mechanical problem and from the description in the previous lines, 
we identify two coupling points. On the one hand we have the electro-mechanical 
coupling between electrophysiology mechanics. On the other hand, we have the 
bidirectional structure-fluid coupling, frequently called Fluid-Structure Interaction (FSI). 
We describe below each model and the two coupling points, all of them implemented 
in Alya. For the three problems, the space discretisation is based on the Finite Element 
Method and the time discretisation is based on the Finite Differences Method.  
 

Electrophysiology 
The electrical depolarization of the heart is orchestrated by the specialized conduction 
system, which regulates heart rate and synchronous depolarization. When talking about 
normal ventricular depolarization, the phenomena starts in the Purkinje network, which 
drives the electrical impulse to the ventricular endocardium, initiating the 
depolarization of the myocardium. Once a few myocytes are excited, a so called all-or-
nothing process starts, where the induced electrical wave propagates to the whole 
heart.   
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At the scales we are considering, waves of depolarization and repolarization can be 
modelled under the continuum mechanics hypothesis. In the tissue scale the 
electrophysiology model can be seen as a transient diffusion PDEs which includes a term 
that describes the ion cell kinetics, modelled by an ordinary differential equation (ODE) 
system.  
 
Different approximations have been proposed for cardiac electrophysiology models, 
such as monodomain or bidomain equations. But, the simplification into monodomain 
formulation is perhaps the most common one [41, 42, 43, 44] and the one we use. 
 
As said above, at a cell scale, the action potential propagation is a discrete process [45]. 
The propagation occurs form one myocyte to the neighbouring one through gap 
junctions. For larger scales, such as tissue scale, the propagation seems to be smooth 
[46]. For cardiac electrophysiology models, the action potential propagation is 
considered as continuous. This is a first and general assumption for modelling cardiac 
electrophysiology [47]. Bidomain model describing the propagation in the myocardium 
can be derived from the classical cable theory for electricity current along the neurones 
[48]. Monodomain models assume that the conductivity of extracellular and 
intracellular regions are proportional.  
 
From the simple models of Hodgkin-Huxley formulation where only Na+ current was 
modelled, models have became more complex both mathematically and 
computationally. In the last decade a huge number of phenomenological cell models 
had been proposed (in chronological order): [49, 50, 51, 52, 53, 54, 55, 56]. On those 
models the degree of physiological detail and mathematical and computational 
complexity varies, due to the number of currents, pumps and exchangers describing the 
cell dynamics included. In the presented examples we used the O’hara-Rudy (ORd) 
model [56], described below. 
 

Solid mechanics and Excitation Contraction coupling 
To model solid mechanics we use the finite elasticity framework. The solid mechanics in 
the heartbeat problem should include the stresses produced by the material model, the 
boundary conditions, the fluid that is making pressure in the solid walls, and the active 
tension induced by the myocytes. The way pressure is imposed in the endocardium and 
the equations for active tension. The solid problem is governed by the linear momentum 
balance.     
In cardiac tissue, stress is assumed to be a combination of passive and active stress  
The passive part is modeled as a slightly compressible invariant-type material and 
through a transverse isotropic exponential strain energy function. This constitutive 
relation describe the response of a material to applied loads, which depends on the 
internal constitution of the material. The active part introduce tension along the fibers 
which depends on the Ca++ concentration computed from the electrophysiology model. 
The coupling model is described below. 
 
Fluid dynamics and fluid-structure interaction 
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The last building block in the heartbeat problem is the set of equations to model fluid 
dynamics. The blood is modeled as Newtonian and incompressible. This fluid is modeled 
with the Navier-Stokes equations in deformable domain, with a so-called arbitrary 
Lagrangian-Eulerian (ALE) formulation.  
In the following pages, we briefly explain the methods followed and the results 
obtained.  
 
The lowest level: Single Cell Models 
 
Electrophysiology 
Several human action potential (AP) models have been proposed for ventricular 
electrophysiology, and amongst them the ORd model [3], developed based on 
experimental recordings from more than 100 human hearts. Its key strengths are the 
representation of CaMKII signalling, the capability to manifest arrhythmia precursors 
such as alternans and early after-depolarisation (EADs), and the good response to 
simulated drug block and disease remodelling [4-7]. As a consequence, the ORd model 
was selected by a panel of experts as the model best suited for regulatory purposes [5]. 
A graphic representation of the ORd model is shown in Figure 36. 
 

 
 

Figure 36. Graphic representation of the biophysically-detailed ORd model, showing all the ionic 
currents, pumps/exchangers, sub-cellular compartments, buffers and ionic fluxes included in it, and 

represented by ordinary differential equations. 
 
Electro-mechanics 
The electrical activity of the cell is summarised by the action potential (AP), which 
triggers the calcium transient (CaT), a large release of calcium from the sarcoplasmic 
reticulum (SR) into the cell. Cardiac contraction is produced by the interaction of 
filaments containing the proteins myosin and actin, and regulated by tropomyosin and 
troponin C. The calcium binds to troponin C, thus causing tropomyosin to move from the 
actin filaments, so that myosin heads can bind to produce contraction. Therefore, the 
CaT is the main link between excitation and contraction in the heart muscle.  
Drugs can affect cardiac electrophysiology and contractility in many different ways. As 
an example, certain drugs directly affect specific cardiac ion channels (e.g. Dofetilide: 
hERG channel block), thus inducing changes on the AP and in turn on CaT and 
contractility, while other drugs can act on different mechanisms (e.g. Pimobendan: 
myofilament calcium sensitizer), thus still affecting the mechanical function of the heart, 
but not via electrophysiological changes [8]. 
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To investigate drug-induced changes to cardiac contraction, we developed an electro-
mechanical model of human ventricular cardiomyocytes, by combining the ORd model 
with the most recent model of human cardiac contractility [9]. The input of the 
electrophysiological model is the stimulus current, defined by the specific simulation 
protocol. The outputs are action potential (AP) and calcium transient (CaT). The latter 
acts as input of the contractility model, whose output is the iso-sarcometric force 
developed by the cell. The contractility model also gives back to the electrophysiological 
model information about the fraction of calcium bound to troponin C (CaTRPN), which 
will induce electrophysiological changes in the following heartbeat. This mechanism is 
called excitation-contraction coupling (ECC), as summarised in Figure 37. Calcium 
constitutes the connection between electrophysiology and mechanics: the CaT 
computed by the ORd model becomes the input of the Land model (ECC), which in turn 
computes the fraction of calcium bound to troponin, to be used as input for the next 
ORd model computation. Cardiac contraction can also, in turn, cause changes to the 
electrophysiology. This is defined as mechano-electrical feedback (MEF) and a notable 
example is represented by the stretch-activated channels (SAC) [10], which are also be 
included in the model. 
 

 
 

Figure 37. Schematic representation of the computational model of human cardiac electro-mechanics, 
designed by coupling the ORd model (for electrophysiology) and the Land model (for mechanics).  

 
Moving up: Multiscale Models 
 
Electrophysiology 
The 3D computational model consists of a biventricular mesh, embedded in a torso 
volume with defined lung and bone regions, as shown in Figure 38. The average size of 
each element in the biventricular mesh is 0.4 mm, to ensure numerical convergence of 
the numerical algorithms [4, 11]. 
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Figure 38. Image extracted from [12]. Visualization of the combined heart-torso mesh. The coloured 
spheres indicate the location of the virtual electrodes, using standard (European) colour-coding. 

 
Any electrophysiological model (e.g. ORd or ToR-ORd) can be used to represent the 
membrane kinetics in the heart. Transmural and apex to base cell electrophysiological 
heterogeneities are defined based on experimental and clinical data [13-16], and 
incorporated in the biventricular mesh. Transmural heterogeneities are modelled using 
three layers: endocardial, mid-myocardial and epicardial cells [4,17]. Apex-to-base 
heterogeneities, known to play a key role in the formation of T waves in the ECG [18] 
are modelled by including a gradual increase of IKs conductance from base to apex, 
resulting in APD90 differences of 25-40 ms [19]. Heart fibre directions are generated 
using the Streeter rule-based method [20], and tissue conductivities are set to generate 
conduction velocities in line with what measured experimentally in myocardial fibres 
across the longitudinal, transversal and transmural axis [21,22]. The propagation of the 
electrical activity in the human ventricles is modelled using bi-domain equations and 
solved with the Chaste software [23]. Sinus rhythm is simulated at 1 Hz using a 
phenomenological activation model with early endocardial activation sites and a fast 
endocardial layer, representing a tightly-packed endocardial Purkinje network, as in 
[12]. Simulation of the ECG signal is computed by calculating the extracellular potentials 
in ten nodes in the torso surface [12], corresponding to the standard electrode positions 
for a 12-lead ECG. When simulating the bi-ventricular mesh only, a pseudo ECG can still 
be computed using the dipole model [24]. 
 
This 3D computational framework has been successfully validated in multiple studies [4, 
12, 15], also comparing simulation results against experimental data at tissue and organ 
level, under healthy and pathological conditions (e.g. acute ischemia). 
 
Electro-mechanics 
By integrating the human ventricular electro-mechanical model into the 3D framework 
described above, we obtained a 3D electro-mechanical model of the human heart. This 
required also the implementation of non-linear solid mechanics equations, to translate 
the active force developed at the single cell level into stretch and stretch rate at the 
whole-organ scale. Figure 39 pictorically describes the model. The main components of 
the model are: nonlinear solid mechanics (blue), electrical propagation (green), 
ventricular cell electrophysiology (yellow), and cellular contractility (red), with arrows 



  D2.4 Report on the Impact of Modeling and Simulation within  
Biomedical Research as enabled by CompBioMed 

 

PU Page 66  Version 1.0 
 

“This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Grant Agreement No 675451“ 

 

representing the coupling mechanisms between the different components. 
Electrophysiology is on the left, mechanics is on the right. Single cell models are at the 
bottom, while 3D models are at the top. 
 

  

 
Figure 39. Schematic representation of the 3D human ventricular electro-mechanical model and 

simulation framework.  
 
 
This 3D electro-mechanical model of Alya allows computing additional biomarkers of 
cardiac function, e.g. ejection fraction (EF) and left ventricular pressure (LVP), in 
additional to the ECG signal. Importantly, the model was constructed and validated 
based on human data. The left ventricle is modelled as an ellipsoid, truncated at the 
base, which provides an end diastolic volume of 160 ml, as shown for human male hearts 
[26-28]. Myocardial fibre directions are considered parallel to the basal plane in the 
middle of the cardiac wall, and vary linearly up to forming an angle of ±60° with the basal 
plane at the endocardium/epicardium, and tangent to the circumferential direction. 
Figure 40 shows geometry and fibre strcture, where fibre vectors are coloured according 
to cell type: endocardial (blue), mid-myocardial (red), and epicardial (green). 
 
Sheet directions are parallel to the vectors normal to the endocardial/epicardial 
surfaces, and do not vary throughout the cardiac wall. The finite element method (FEM) 
is used for model solving, considering linear tetrahedra with a maximum edge length of 
∼0.025 cm, resulting in ∼33M elements and ∼5.6M nodes. Details are included in a 
manuscript which is submitted for publication [30]. 
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Figure 40. Computational mesh (left) and fibre architecture (right) of the ellipsoid model. The 
computational mesh is made of linear tetrahedra.  

 
 
Results summary  

 

Single Cell Models 
 
Human in Silico Drug Trials to Predict Risk of Torsade de Pointes 
During the first year of the project, we demonstrated the predictive power of 
populations of human ventricular AP models for prediction of drug-induced Torsade de 
Pointes (TdP) risk based on repolarisation abnormalities occurrence. We were able to 
achieve a prediction accuracy of 89% for a set of 62 reference compounds. The results 
of these in silico drug trials were published [31], and also led to the award of the 
International 3Rs prize in 2017.  
 
More recently, we performed a similar study, including an additional biomarker: the 
electro-mechanical window (EMw), defined as the delay between the duration of 
electrical and mechanical systole, which has been suggested as a promising biomarker 
to predict clinical risk of Torsade de Pointes (TdP) arrhythmia in several pre-clinical 
animal models [32-35]. Our single cell surrogate of the in vivo EMw was able to predict 
TdP risk for a dataset of 40 compounds with 90% accuracy, confirming the potential of 
drug-induced EMw shortening as a biomarker for pro-arrhythmic risk. The results of 
these in silico drug trials are currently under review for publication [36]. 
 
All these studies were performed using the ORd human ventricular model. Therefore, 
after developing our new ToR-ORd model, we are also performing human in silico drug 
trials with a new population of ToR-ORd models. Results obtained with the new model 
are in agreement with the ones obtained with the original ORd model for most 
compounds, with an improvement in predictions for sodium blockers. As an example, in 
silico drug trial results for Mexiletine are shown in Figure 41, for the two models. 
Mexiletine induced early after-depolarisations in the ORd model (right panel), and it is 
therefore mis-classified as risky drug, while it is generally considered safe. This is due to 
the non-physiological increase in calcium, following sodium block in the ORd model, 
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which is now corrected in the ToR-ORd model. Indeed, Mexiletine doesn’t cause any 
early after-depolarisation in the ToR-ORd model (left panel). These results are included 
in manuscript presenting the ToR-ORd model, currenty under review for publication 
[37]. 
 

 
Figure 41. A comparison of in silico drug trial results for a high dose of Mexiletine in the ToR-ORd (left) 
and ORd (right, based population of human ventricular models. Traces classified as EADs are plotted in 

red (manifesting only in the ORd population). 
 
In Silico Predictions of Drug-induced Changes in Contractility  
These are preliminary results obtained by testing the effect of two reference compounds 
on our single cell model of cardiac electro-mechanics, to explore drug-induced changes 
in active tension. Figure 42 and Figure 43 show simulation results for Dofetilide and 
Verapamil at multiple concentrations. 
 

• Dofetilide: Drug-induced changes in AP, CaT and active force, and comparing the 
results against experimental data obtained in human cardiomyocytes [38]. 
Dofetilide is a drug with high TdP risk, known to cause early after-
depolarisations.  

 

• Verapamil: Concentration dependent changes in active force. From the 
generated dose-response curve, we estimated the IC50 and h for active tension 
reduction, which was in agreement with what observed experimentally for 
sarcomere shortening [38]. Verapamil is a drug considered safe, and known to 
have a negative inotropic effect. 

 
We performed similar test for a variety of reference compounds, and a manuscript with 
these results in currently in preparation. 
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Figure 42. Simulation results for Dofetilide, obtained used our human electro-mechanical model. A: 
when considering low doses, Dofetilide induces AP prolongation and causes a slight increase in CaT and 

active force; B: when considering higher dose and slow pacing, Dofetilide induces early after-
depolarisations, which also induce after-contractions; C, D: experimental data by [38], showing after-

contractions for higher concentrations of Dofetilide. 
 

 
Figure 43. Simulation results for Verapamil, highlighting its negative inotropic effect. A, B: simulation 
results. C, D: experimental data by Nguyen et al. (2017). Verapamil decreases tension and sarcomere 

shortening in a concentration-dependent manner. 
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Multiscale Models 
 
Simulations of the ECG signal in a 3D Model 
Figure 44 shows a representative example of the simulated ECG signal, obtained using a 
biventricular and torso mesh, with the ToR-ORd model [37]. Simulation results are in 
good agreement with clinical recordings from a healthy subject, PTB database [39]. 

 
 

Figure 44. Simulated vs clinical 12-lead electrocardiogram. A) 12-lead ECGs at 1Hz: simulation using the 
ToR-ORd model in an MRI-based human torso-ventricular model (top panel) and a healthy patient ECG 

record (bottom panel, https://physionet.org, PTB database, subject 122 [39]). B) Virtual electrode 
positions on the simulated torso. C) Activation time map. D) APD map. 

 
3D Electro-mechanical Simulations of the Human Heart 
The multiscale human cardiac electro-mechanical model with ellipsoidal geometry is 
able to simulate all the four phases of the cardiac cycle, as illustrated in Figure 45. At the 
beginning of the cycle, an initiation phase brings the system to a physiological end-
diastolic configuration, by increasing the ventricular pressure applied to the 
endocardium up to a physiological value for left ventricular end-diastolic pressure, while 
keeping the volume constant. The second phase is the isovolumetric contraction, where 
the aortic valve is closed, and the ventricular pressure increases due to contraction of 
the ventricles caused by electrical activation, while keeping the volume constant. When 
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the ventricular pressure surpasses the arterial pressure, the aortic valve opens and the 
ejection phase begins, eventually leading to a reduction in ventricular volume. Then, 
when the ventricular flow reverses, the isovolumetric relaxation phase begins. In this 
phase, the ventricular pressure decreases while keeping the ventricular volume constant 
at the end-systolic volume. Finally, the isovolumetric relaxation phase ends when the 
pressure drops below a specified threshold, and blood starts flowing from the atria to 
the ventricles while the ventricular volume returns to its initial value (filling phase). 
Illustrative frames acquired during a simulated cardiac cycle are shown in Figure 46. 
 

 
Figure 45. Time evolution of pressure and volume obtained for the ellipsoid electro-mechanical model. 
The cardiac cycle starts at a physiological end-diastolic volume of 160 ml. All four phases of the cardiac 

cycle are labelled in the figure.  
 

 
 

Figure 46. Representative frames captured during the simulation of a cardiac cycle (from left to right, 
top to bottom). The endocardium is homogeneously activated at the beginning of the cardiac cycle and, 
as the depolarization wave propagates through the myocardial wall, mechanical contraction is triggered. 
 
Applications towards clinical translation  

A common characteristic of the existing human cardiac models is that personalised 
geometries usually come from in-vivo imaging and the majority of computational 
meshes consider simplified ventricular geometries with smoothed endocardial (internal) 
surfaces, due to a lack of high resolution, fast and safe in-vivo imaging techniques. 
Acquiring human high-resolution images would mean for the patient to undergo long, 
expensive and impractical scans, in the case of magnetic resonance images (MRI), or 
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could present a risk for the patient’s health, in the case of computed tomography (CT), 
since this process involves a considerable amount of radiation. Smoothed ventricular 
surfaces are indeed considered by the majority of existing human heart computational 
models, both when modelling blood flow dynamics and electrophysiology. 
 
However the endocardial wall of human (and other mammals species) cardiac chambers 
is not smooth at all; it is instead characterised by endocardial sub-structures such as 
papillary muscles (PMs), trabeculations and false tendons (FTs). Additionally, 
fundamental anatomical gender differences can be found in cardiac sub-structural heart 
configuration as female hearts present less amount of FTs [57]. 
Since there is little information about the role of endocardial substructures in human 
cardiac function, considering them in the human in-silico cardiac simulations would 
present a first step towards the understanding of their function. Additionally, comparing 
simulations results including sub-structural anatomical information with those obtained 
when considering simplified human cardiac geometries (representing common existing 
models) would shed a light on the errors introduced when neglecting human 
endocardial sub-structures. 
 
Another important aspect which is often ignored in in-silico simulations and could 
influence their outcome is gender phenotype. Female hearts have reduced resources for 
repolarization due to differences in K+ channels as compared to male phenotypes, 
leading to longer action potential durations (APDs) [58]. Longer APDs are consistent with 
clinical observation that females have longer QT intervals (time the heart takes to 
depolarize and repolarize) than males. Gender specificity can lead then to 
arrythmogenesis differences and so it may be important to consider different gender 
phenotypes when running in-silico electrophysiological simulations, in order to obtain 
results which are of clinical relevance and that can be compared to the subject-specific 
clinical data. 
 
As shown in [61], we have created highly detailed human heart models from ex-vivo 
high-resolution MRI data, to study the role of cardiac sub-structures and gender 
phenotype in human cardiac physiology, through computational fluid dynamics (CFD) 
and electrophysiological high performance computing (HPC) simulations. The 
contributions this work can be summarised as follows: 
 

• A pipeline of anatomically detailed cardiac volumetric mesh reconstruction was 
set up, starting from an ex vivo high-resolution human heart MRI database, as 
shown in Figure 47. 
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Figure 47. Volumetric mesh generation pipeline and a close up to the amount of endocardial detailed 
captured in the cardiac models [61]. 

 
• The impact of trabeculae and PMs on the blood flow within human left 

ventricular (LV) chambers was analysed using CFD simulations. This study 
demonstrated how the presence of trabeculae and PMs increase the intra-
ventricular pressure drop, reduce the wall shear stress (WSS) and disrupt the 
main dominant single vortex, usually present in the smoothed endocardium 
models, generating secondary small vortices. Moreover, human female LVs were 
found to be less trabeculated than the male ones (Figure 48, Figure 49). 

 

 
 

Figure 48. Magnitude of the wall shear stress (WSS) during constant inflow simulations on all cases. All 
geometries are clipped and aligned to the upper axes in the figure. The septum is pointed out for spatial 

reference [61]. 
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Figure 49. Vorticity estimated using the Q-criterion, thresholded at 5000s-2, for constant flow 
simulations in the LVs with smoothed (top) and detailed (bottom) geometries. Vortices are coloured by 

velocity magnitude [61]. 
 

• A methodology to incorporate the effect of trabeculations into smoothed 
ventricular geometries was proposed. By adding a porous layer along the LV 
endocardial walls, both the intra-ventricular pressure drops and the vorticity, 
observed in the detailed models, could be reproduced also within smooth-walled 
LV geometries (Figure 50). 

 

 
Figure 50. Left: Porous layer (in light red) on subject A and the corresponding detailed anatomy. Right: 
Vorticity estimated using the Q-criterion, thresholded at 5000 s.2, for constant inflow simulations with 

smoothed, detailed and smoothed with porous layer geometries. Vortices are coloured by velocity 
magnitude (m/s) [61]. 

 
• The effect of detailed endocardial structures on human right ventricular (RV) 

haemodynamics was analysed using CFD simulations. RV endocardial walls are 
even more trabeculated than the LV ones, but even less is known about the 
effect of the presence of the endocardial structures on RV haemodynamics. In 
this study, it was shown how detailed endocardial structures increase the degree 
of RV intra-ventricular pressure drop, decrease the WSS and disrupt the 
dominant vortex creating secondary small vortices. In addition, turbulent blood 
flow was observed within the detailed RV chambers. Moreover, human female 
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RV were less trabeculated and presented lower intra-ventricular pressure drops 
than the male ones (Figure 51, Figure 52). 

 

 
Figure 51. Magnitude of the wall shear stress (WSS) during constant inflow simulations tin RVs with 

smoothed (left) and detailed (right) geometry [61]. 
 

 

 
Figure 52. Vortex quantification using the Q-criterion thresholded at 9000 s-2 of constant inflow 

simulations in all RVs (female, F1 and F2; male, M1 and M2). Vortices are coloured by the velocity 
magnitude [m/s] [61]. 

 
• The influence of both highly detailed anatomical endocardial structures and 

gender phenotype on the electrophysiology of four biventricular, anatomically 
normal human heart models was investigated. Furthermore, a comparison to 
smoothed-endocardium geometries was done to quantify the errors introduced 
by neglecting such structures (Figure 53). Simulations showed a significant 
repolarization times increase in the detailed female phenotype cases, coinciding 
with the observed QT prolongation in the female hearts. Moreover, the 
simulations suggested that the absence of trabeculations reduces the total 
cardiac repolarization times due to different activation patterns in the smoothed 
cases. Finally, the presence of FTs shortcuts the signal propagation leading to 
faster total activation times  
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Figure 53. Electrophysiology simulation results: depolarization wave distribution at 60 ms, male 
phenotype [61]. 

 
Path to Code Validation. 

Validation means that the simulation software is correctly reproducing the multiple 
physics of the question of interest for a determined context of use. This not only requires 
correctly solving the programmed model, but that the model effectively models the 
physics. To do so, experimental data is required to compare ex-vivo, in-vitro and in-vivo 
data against in-silico results. This stage requires a detailed description of the variables 
of the physical problem that is, in most of the cases, complex to obtain with a high 
accuracy.  
 
As part of the collaboration with the Centro Nacional de Investigaciones 
Cardiovasculares (CNIC), the pathway to the validation of the cardiac model against 
experimental is being underway, as published in the thesis [60]. After a myocardial 
infarction, the affected areas of the cardiac tissue suffer changes in their electrical and 
mechanical properties. This post-infarction scar tissue has been related with a particular 
type of arrhythmia: ventricular tachycardia (VT). A thorough study on the experimental 
data acquired with clinical tools is presented in this thesis with the objective of defining 
the limitations of the clinical data towards predictive computational models. 
Computational models have a large potential as predictive tools for VT, but the 
verification, validation and uncertain quantification of the numerical results is required 
before they can be employed as a clinical tool. 
 
Swine experimental data from an invasive electrophysiological study and Cardiac 
Magnetic Resonance imaging is processed to obtain accurate characterizations of the 
post-infarction scar. Based on the results, the limitation of each technique is described. 
Furthermore, the volume of the scar is evaluated as marker for post-infarction VT 
induction mechanisms. 
 
A control case from the animal experimental protocol was employed to build a 
simulation scenario in which biventricular simulations were done using a detailed cell 
model adapted to the ionic currents present in the swine myocytes. The uncertainty of 
the model derived from diffusion and fibre orientation was quantified. Finally, the 
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recovery of the model to an extrastimulus is compared to experimental data by 
computationally reproducing an S1-S2 protocol. 
 

 
 

Figure 54. Activation maps including isochrones of the epicardium and the endocardium from 
experimental measurements and simulation data [60]. 

 
Results from the cardiac computational model show that the propagation wave patterns 
from numerical results very reasonably match the one described by the experimental 
activation maps if the DTI fibre orientations are used. As the electrophysiological 
activation is sensitive to fibre orientation, simulations including the fibre orientations 
from DTI are able to reproduce a physiological wave propagation pattern, as seen in 
Figure 54. The diffusion coefficients highly determine the conduction velocity. The S1-
S2 protocol produced restitution curves that have similar slopes to the experimental 
curves. 
 
This work is a first step forward towards validation of cardiac electrophysiology 
simulations. Future work will address the limitations about optimal parametrization of 
the O’Hara-Rudy cell model to fully validate the cardiac computational model for 
prediction of VT inducibility. 
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Figure 55. A leadless pacemaker implanted in the virtual heart. Q-criterion and velocity fields can be 
seen distorted in the soroundings of the implantation spot [40]. 

 
Path to medical device testing 

During the last three years, through different collaborations, the area of device testing 
has been exploited in BSC's research group. Especially thanks to collaborations with the 
associate partner Medtronic, our model of the heart was used to study devices related 
with heart diseases such as pacemakers and stents (Figure 55, Figure 56). First we study 
widely known treatments for common pathologies, although not completely 
understood. These simulations can help to better understand the pathology and the 
treatment, or at least optimise the device set-up to maximise the performance. The 
stages of verification and validation are required to confidently translate these results 
to clinical applications. 
 

 
 

Figure 56. The left side shows a heart beating in normal conditions. The right side shows a heart beating 
under left bundle branch block. The elecrical dyssynchrony is easily seen. Also the reduction in the 

velocities on the fluid domain that will lead to a drop in the ejection fraction [40]. 
 
Summarizing what was done in ComBioMed, we developed a computational framework 
to conduct multiscale simulations of human cardiac fluid-electro-mechanics. Our models 
have been calibrated and validated at different scales against human experimental data, 
and they can be used to investigate drug-induced changes in ECG signal, EF and LVP and 
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medical devices action. Models can be personalised to be patient specific, incorporating 
anatomical information and also diseased conditions (e.g. fibrosis, ischemia, myocardial 
infarction). 
 
Summary of collaborations started or enforced thanks to the project 

• Medtronic: enforced, use of Alya model in leadless pacemakers. 
• Centro Nacional de Investigaciones Cardiovasculares (CNIC, Madrid): enforced, 

code validation against experiments and human data. 
• Hospital Sant Pau (Barcelona): enforced, coronary diseases. 
• Visible Heart Lab, University of Minnesota: enforced, explanted human hearts 

data. 
 
References for this section 

[1]. Pappalardo, F., Russo, G., Tshinanu, F. M. & Viceconti, M. In silico clinical trials: 
concepts and early adoptions. Briefings in Bioinformatics (2018). 
doi:10.1093/bib/bby043 
[2]. Carusi, A., Burrage, K. & Rodriguez, B. Bridging experiments, models and 
simulations: an integrative approach to validation in computational cardiac 
electrophysiology. Am J Physiol Heart Circ Physiol 303, H144-155 (2012). 
[3]. O’Hara, T., Virág, L., Varró, A. & Rudy, Y. Simulation of the undiseased human 
cardiac ventricular action potential: Model formulation and experimental validation. 
PLoS Computational Biology 7, e1002061 (2011). 
[4]. Dutta, S. et al. Early afterdepolarizations promote transmural reentry in ischemic 
human ventricles with reduced repolarization reserve. Progress in Biophysics and 
Molecular Biology 120, 236–248 (2016). 
[5]. Dutta, S. et al. Optimization of an In silico Cardiac Cell Model for Proarrhythmia 
Risk Assessment. Frontiers in Physiology 8, 616 (2017). 
[6]. Passini, E. et al. Mechanisms of pro-arrhythmic abnormalities in ventricular 
repolarisation and anti-arrhythmic therapies in human hypertrophic cardiomyopathy. 
Journal of Molecular and Cellular Cardiology 96, 72–81 (2016). 
[7]. Tomek, J., Rodriguez, B., Bub, G. & Heijman, J. Β-Adrenergic Receptor Stimulation 
Inhibits Proarrhythmic Alternans in Post-Infarction Border Zone Cardiomyocytes: a 
Computational Analysis. American Journal of Physiology - Heart and Circulatory 
Physiology ajpheart.00094.2017 (2017). doi:10.1152/ajpheart.00094.2017 
[8]. Bers, D. M. Excitation-contraction coupling and cardiac contractile force. (Kluwer 
Academic Press, 2008). 
[9]. Land, S. et al. A model of cardiac contraction based on novel measurements of 
tension development in human cardiomyocytes. Journal of Molecular and Cellular 
Cardiology 106, 68–83 (2017). 
[10]. Zabel, M., Koller, B. S., Sachs, F. & Franz, M. R. Stretch-induced voltage changes in 
the isolated beating heart: importance of the timing of stretch and implications for 
stretch-activated ion channels. Cardiovascular research 32, 120–30 (1996). 
[11]. Bernabeu, M. O., Wallman, M. & Rodriguez, B. Shock-induced arrhythmogenesis 
in the human heart: A computational modelling study. in 2010 Annual International 



  D2.4 Report on the Impact of Modeling and Simulation within  
Biomedical Research as enabled by CompBioMed 

 

PU Page 80  Version 1.0 
 

“This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Grant Agreement No 675451“ 

 

Conference of the IEEE Engineering in Medicine and Biology 760–763 (IEEE, 2010). 
doi:10.1109/IEMBS.2010.5626338 
[12]. Cardone-Noott, L., Bueno-Orovio, A., Mincholé, A., Zemzemi, N. & Rodriguez, B. 
Human ventricular activation sequence and the simulation of the electrocardiographic 
QRS complex and its variability in healthy and intraventricular block conditions. 
Europace 120, 179–188 (2016). 
[13. ]Okada, J. -i. et al. Screening system for drug-induced arrhythmogenic risk 
combining a patch clamp and heart simulator. Science Advances 1, e1400142–
e1400142 (2015). 
[14]. Drouin, E., Charpentier, F., Gauthier, C., Laurent, K. & Le Marec, H. 
Electrophysiologic characteristics of cells spanning the left ventricular wall of human 
heart: evidence for presence of M cells. Journal of the American College of Cardiology 
26, 185–92 (1995). 
[15]. Taggart, P. et al. Transmural repolarisation in the left ventricle in humans during 
normoxia and ischaemia. Cardiovascular research 50, 454–62 (2001). 
[16]. Boukens, B. J. et al. Local transmural action potential gradients are absent in the 
isolated, intact dog heart but present in the corresponding coronary-perfused wedge. 
Physiological Reports 5, e13251 (2017). 
[17]. Lyon, A. et al. Distinct ECG Phenotypes Identified in Hypertrophic 
Cardiomyopathy Using Machine Learning Associate With Arrhythmic Risk Markers. 
Frontiers in Physiology 9, 213 (2018). 
[18]. Weiss, D. L. et al. Modeling of heterogeneous electrophysiology in the human 
heart with respect to ECG genesis. in 2007 Computers in Cardiology 49–52 (IEEE, 
2007). doi:10.1109/CIC.2007.4745418 
[19]. Bishop, M. J., Vigmond, E. J. & Plank, G. The functional role of electrophysiological 
heterogeneity in the rabbit ventricle during rapid pacing and arrhythmias. American 
Journal of Physiology-Heart and Circulatory Physiology 304, H1240–H1252 (2013). 
[20]. Streeter, D. D., Spotnirz, H. M., Patel, D. P., Ross, J. & Sonnenblick, E. H. Fiber 
Orientation in the Canine Left Ventricle during Diastole and Systole. Circulation 
Research 24, (1969). 
[21]. Taggart, P. et al. Inhomogeneous transmural conduction during early ischaemia in 
patients with coronary artery disease. Journal of molecular and cellular cardiology 32, 
621–630 (2000). 
[22]. Sutton, P. M. et al. Repolarisation and refractoriness during early ischaemia in 
humans. Heart (British Cardiac Society) 84, 365–9 (2000). 
[23]. Pitt-Francis, J. et al. Chaste: A test-driven approach to software development for 
biological modelling. Computer Physics Communications 180, 2452–2471 (2009). 
[24]. Gima, K. & Rudy, Y. Ionic current basis of electrocardiographic waveforms: A 
model study. Circulation Research 90, 889–896 (2002). 
[25]. Martinez-Navarro, H., Mincholé, A., Bueno-Orovio, A. & Rodriguez, B. Septo-
apical microreentrant pathways explain variability in arrhythmic risk in acute regional 
ischemia. Manuscript under review (2019). 
[26]. Petersen, S. E. et al. Reference ranges for cardiac structure and function using 
cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank 



  D2.4 Report on the Impact of Modeling and Simulation within  
Biomedical Research as enabled by CompBioMed 

 

PU Page 81  Version 1.0 
 

“This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Grant Agreement No 675451“ 

 

population cohort. Journal of cardiovascular magnetic resonance : official journal of 
the Society for Cardiovascular Magnetic Resonance 19, 18 (2017). 
[27]. Clay, S. et al. Normal Range of Human Left Ventricular Volumes and Mass Using 
Steady State Free Precession MRI in the Radial Long Axis Orientation. Magnetic 
Resonance Materials in Physics, Biology and Medicine 19, 41–45 (2006). 
[28]. Cain, P. A. et al. Age and gender specific normal values of left ventricular mass, 
volume and function for gradient echo magnetic resonance imaging: a cross sectional 
study. BMC medical imaging 9, 2 (2009). 
[29]. Santiago, A. et al. Fully coupled fluid-electro-mechanical model of the human 
heart for supercomputers. International journal for numerical methods in biomedical 
engineering 34, e3140 (2018). 
[30]. Levrero-Florencio, F. et al. Sensitivity analysis of a strongly coupled 
electromechanical cardiac model: effect of mechanical parameters on physiologically 
relevant biomarkers. (2019). 
[31]. Passini, E. et al. Human In Silico Drug Trials Demonstrate Higher Accuracy than 
Animal Models in Predicting Clinical Pro-Arrhythmic Cardiotoxicity. Frontiers in 
Physiology 8, 1–15 (2017). 
[32]. Morissette, P. et al. Shortening of the electromechanical window in the 
ketamine/xylazine-anesthetized guinea pig model to assess pro-arrhythmic risk in early 
drug development. Journal of Pharmacological and Toxicological Methods 81, 171–182 
(2016). 
[33]. Guns, P.-J., Johnson, D., Van Op den bosch, J., Weltens, E. & Lissens, J. The 
electro-mechanical window in anaesthetized guinea pigs: a new marker in screening 
for Torsade de Pointes risk. British Journal of Pharmacology 166, 689–701 (2012). 
[34]. Guns, P.-J., Johnson, D. M., Weltens, E. & Lissens, J. Negative electro-mechanical 
windows are required for drug-induced Torsades de Pointes in the anesthetized guinea 
pig. Journal of Pharmacological and Toxicological Methods 66, 125–134 (2012). 
[35]. van der Linde, H. J. et al. The Electro-Mechanical window: A risk marker for 
Torsade de Pointes in a canine model of drug induced arrhythmias. British Journal of 
Pharmacology 161, 1444–1454 (2010). 
[36]. Passini, E. et al. Drug-induced Shortening of the Electromechanical Window is an 
Effective Biomarker for in Silico Prediction of Clinical Risk of Arrhythmias. (2019). 
[37]. Tomek, J. et al. Development, Calibration and Validation of a Novel Human 
Ventricular Myocyte Model in healthy, Diseased, and Drug Block Conditions. 
Manuscript under review (2019). 
[38]. Nguyen, N. et al. Adult human primary cardiomyocyte-based model for the 
simultaneous prediction of drug-induced inotropic and pro-arrhythmia risk. Frontiers 
in Physiology 8, 1073 (2017). 
[39]. Goldberger, A. L. et al. PhysioBank, PhysioToolkit, and PhysioNet. Circulation 101, 
(2000). 
[40] Santiago, A. (2018). Fluid-electro-mechanical model of the human heart for 
supercomputers. PhD Theses, UPC BarcelonaTech. 
[41] Steven A Niederer, Eric Kerfoot, Alan P Benson, Miguel O Bernabeu, Olivier 
Bernus, Chris Bradley, Elizabeth M Cherry, Richard Clayton, Flavio H Fenton, Alan 



  D2.4 Report on the Impact of Modeling and Simulation within  
Biomedical Research as enabled by CompBioMed 

 

PU Page 82  Version 1.0 
 

“This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Grant Agreement No 675451“ 

 

Garny, et al. Verification of cardiac tissue electrophysiology simulators using an n-
version benchmark. Phil. Trans. R. Soc. A, 369(1954):4331–4351, 2011. 
[42] Mark Potse, Bruno Dubé, Jacques Richer, Alain Vinet, and Ramesh M Gulrajani. A 
comparison of monodomain and bidomain reaction diffusion models for action 
potential propagation in the human heart. IEEE Transactions on Biomedical 
Engineering, 53(12):2425–2435, 2006. 
[43] Bradley J Roth. Meandering of spiral waves in anisotropic cardiac tissue. Physica D: 
Nonlinear Phenomena, 150(1-2):127–136, 2001. 
[44] P Colli Franzone, LF Pavarino, and B Taccardi. Simulating patterns of excitation, 
repolarization and action potential duration with cardiac bidomain and monodomain 
models. Mathematical biosciences, 197(1):35–66, 2005. 
[45] André G Kléber and Yoram Rudy. Basic mechanisms of cardiac impulse 
propagation and associated arrhythmias. Physiological reviews, 84(2):431–488, 2004. 
[46] Dirk Durrer, R Th Van Dam, GE Freud, MJ Janse, FL Meijler, and RC Arzbaecher. 
Total excitation of the isolated human heart. Circulation, 41(6):899–912, 1970. 
[47] RH Clayton, Olivier Bernus, EM Cherry, Hans Dierckx, FH Fenton, L Mirabella, AV 
Panfilov, Frank B Sachse, G Seemann, and H Zhang. Models of cardiac tissue 
electrophysiology: progress, challenges and open questions. Progress in biophysics and 
molecular biology, 104(1-3):22–48, 2011. 
[48] Joakim Sundnes, Glenn Terje Lines, Xing Cai, Bjørn Frederik Nielsen, Kent-Andre 
Mardal, and Aslak Tveito. Computing the electrical activity in the heart, volume 1. 
Springer Science & Business Media, 2007. 
[49] Jinichi Nagumo, Suguru Arimoto, and Shuji Yoshizawa. An active pulse 
transmission line simulating nerve axon. Proceedings of the IRE, 50(10):2061–2070, 
1962. 
[50] Go W Beeler and H Reuter. Reconstruction of the action potential of ventricular 
myocardial fibres. The Journal of physiology, 268(1):177–210, 1977. 
[51] Ching-hsing Luo and Yoram Rudy. A model of the ventricular cardiac action 
potential. depolarization, repolarization, and their interaction. Circulation research, 
68(6):1501–1526, 1991. 
[52] Flavio Fenton and Alain Karma. Vortex dynamics in three-dimensional continuous 
myocardium with fiber rotation: Filament instability and fibrillation. Chaos: An 
Interdisciplinary Journal of Nonlinear Science, 8(1):20–47, 1998. 
[53] Jeffrey J Fox, Jennifer L McHarg, and Robert F Gilmour Jr. Ionic mechanism of 
electrical alternans. American Journal of Physiology- Heart and Circulatory Physiology, 
282(2):H516–H530, 2002. 
[54] KHWJ Ten Tusscher, Denis Noble, Peter-John Noble, and Alexander V Panfilov. A 
model for human ventricular tissue. American Journal of Physiology-Heart and 
Circulatory Physiology, 286(4):H1573–H1589, 2004. 
[55] Alfonso Bueno-Orovio, Elizabeth M Cherry, and Flavio H Fenton. Minimal model 
for human ventricular action potentials in tissue. Journal of theoretical biology, 
253(3):544–560, 2008. 
[56] Thomas O’Hara, László Virág, András Varró, and Yoram Rudy. Simulation of the 
undiseased human cardiac ventricular action potential: model formulation and 
experimental validation. PLoS computational biology, 7(5):e1002061, 2011. 



  D2.4 Report on the Impact of Modeling and Simulation within  
Biomedical Research as enabled by CompBioMed 

 

PU Page 83  Version 1.0 
 

“This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Grant Agreement No 675451“ 

 

[57] P. H. Luetmer, W. D. Edwards, J. B. Seward, et al. “Incidence and Distribution of 
Left Ventricular False Tendons: an Autopsy Study of 483 Normal Human Hearts”. In: J. 
Am. Coll. Cardiol. (1986). 
[58] N. Gaborit, A. Varro, S. Le Bouter, et al. “Gender-related Differences in Ion-
channel and Transporter Subunit Expression in Nondiseased Human Hearts”. In: J. Mol. 
Cell. Cardiol. (2010). 
[59] Stephenson RS, Atkinson A, Kottas P, et al. High resolution 3-Dimensional imaging 
of the human cardiac conduction system from microanatomy to mathematical 
modeling. Sci Rep. 2017;7(1):7188. Published 2017 Aug 3. doi:10.1038/s41598-017-
07694-8 
[60] López-Yunta, M. (2018). Multimodal ventricular tachycardia analysis: towards the 
accurate parameterization of predictive HPC electrophysiological computational 
models. UPC BarcelonaTech. 
[61] Sacco, F (2019). Quantification of the influence of detailed endocardial structures 
on human cardiac hemodynamics and electrophysiology using HPC. Universitat 
Pompeu Fabra & UPC BarcelonaTech. 
[62] Gil, D., Aris, R., Borras, A., Ramírez, E., Sebastian, R., & Vazquez, M. (2019). 
Influence of fiber connectivity in simulations of cardiac biomechanics. International 
journal of computer-assisted radiology and surgery, 14(1), 63-72. 
[63] López-Yunta, M., León, D. G., Alfonso-Almazán, J. M., Marina-Breysse, M., 
Quintanilla, J. G., Sánchez-González, J., ... & Ibáñez, B. (2018). Implications of bipolar 
voltage mapping and magnetic resonance imaging resolution in biventricular scar 
characterization after myocardial infarction. Ep Europace, 21(1), 163-174. 
[64] León, D. G., López-Yunta, M., Alfonso-Almazán, J. M., Marina-Breysse, M., 
Quintanilla, J. G., Sánchez-González, J., ... & Pérez-Villacastín, J. (2019). Three-
dimensional cardiac fiber disorganization as a novel parameter for ventricular 
arrhythmia stratification after myocardial infarction. EP Europace, 21(5), 822-832. 
[65] Santiago, A., Aguado-Sierra, J., Zavala-Aké, M., Doste-Beltran, R., Gómez, S., Arís, 
R., ... & Vázquez, M. (2018). Fully coupled fluid-electro-mechanical model of the 
human heart for supercomputers. International journal for numerical methods in 
biomedical engineering, 34(12), e3140. 
[66] Sacco, F., Paun, B., Lehmkuhl, O., Iles, T. L., Iaizzo, P. A., Houzeaux, G., ... & 
Aguado-Sierra, J. (2018). Evaluating the roles of detailed endocardial structures on 
right ventricular hemodynamics by means of CFD simulations. International journal for 
numerical methods in biomedical engineering, 34(9), e3115. 
[67] Vázquez, M., Houzeaux, G., Koric, S., Artigues, A., Aguado-Sierra, J., Arís, R., ... & 
Taha, A. (2016). Alya: Multiphysics engineering simulation toward exascale. Journal of 
computational science, 14, 15-27. 
[68] Sacco F., Paun B., Lehmkuhl O., Iles T.L., Iaizzo P.A., Houzeaux G., Vázquez M., 
Butakoff C., Aguado-Sierra J., Left ventricular trabeculations decrease the wall shear 
stress and increase the intraventricular pressure drop in CFD simulations, Frontiers in 
Physiology, 2018 
[69] Sacco F., Doste R., Bederián C., Iles T.L., Iaizzo P.A., Houzeaux G., Vázquez M., 
Camara O., Butakoff C., Aguado-Sierra J., Systematic electrophysiological analysis of 



  D2.4 Report on the Impact of Modeling and Simulation within  
Biomedical Research as enabled by CompBioMed 

 

PU Page 84  Version 1.0 
 

“This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Grant Agreement No 675451“ 

 

four biventricular, anatomically normal human heart models, accepted for submission 
to Interface Focus of The Royal Society, 2019. 
  

Molecularly-based Medicine Exemplar Research 

Universitat Pompeu Fabra: Machine Learning and Molecular Dynamics  

Pharmaceutical industry is facing an unprecedented challenge nowadays. Introducing a 
new drugs into the market involves a 15-year-long process and billions of dollars in 
investment, yet the success rate is pretty low (Figure 57). The probability that a 
candidate drug in Phase I clinical trials ends up being approved is around 7% [19]. It is in 
everybody's interest to keep drug discovery as a sustainable model, and therefore it is 
required to reduce its overall cost, speed up the discovery process and improve the 
success rates. 
 

 
Figure 57. General scheme of the entire drug discovery process and all the stages required to release 

new medicines into the market. 
 
Our primary objective within the CompBiomed project has been to develop novel 
computational methods for the early stages in the drug discovery pipeline in order to 
accelerate the obtention of drug candidates and reduce the experimental workload and 
its associated costs. We advance towards the next generation of drug discovery, which 
relies on computational predictive models that are able to test millions of compounds 
in silico, giving accurate and precise results and reducing the amount of experimental 
tests needed on the design process. Furthermore, having computational methods that 
are powerful enough opens up the possibility to drastically reduce (and, on the long 
term, even remove) animal experiments, a fundamental requirement for a more 
sustainable and ethically responsible drug discovery process. 
 
Designing novel drugs is a complex process where multiple parameters have to be 
optimized, so as the designed compound can be administered to the body and bind 
strongly to a specific protein target. If the compound will bind with the target is 
dependent on laws of physics, both on atomic and subatomic scale. As there are many 
factors affecting the interaction, computational modeling is hard and experimental 
validation is the most reliable source of data.  
 
However, with the recent advances in artificial intelligence and deep learning we can 
leverage the data and use it for novel predictions. Particularly, deep learning can be 
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applied to extract complex patterns from simple representations. In our work, we 
leverage deep learning methods to extract patterns from three-dimensional 
representations of molecules and proteins. We developed models inspired by computer 
vision architectures, where both protein and the ligand are divided in a three 
dimensional grid with features representing different atomic properties, such as 
hydrophobicity or aromaticity. Deep learning models have already demonstrated an 
incredible performance (sometimes even above human) in several different tasks, such 
as image recognition, natural language processing or audio recognition. The next step is 
drug discovery. Deep learning models can perform in silico predictions based on in 
vitro/in vivo experimental data in a matter of seconds, which would directly translate 
into a faster discovery rate for potential drug candidates.  
 
The efficiency of deep learning methodologies strongly rely on data. For an optimal 
performance, deep learning models require extensive amounts of data to be trained on. 
More often than not, the available data is scarce, especially on structural biology. 
Therefore, to counter this, we have also been working with physics-based methods, such 
as molecular dynamics (MD) simulations, which do not suffer from strong data 
dependency. Molecular dynamics is a multi-scale simulation method that simulates 
biologically relevant molecular systems, such as protein ligand binding scenarios, with 
atomic resolution. MD simulates atom movements by using Newton's equations of 
motion, scaling it up to all the atoms in a molecular system. The analysis of biomolecular 
simulations delivers accurate predictions on drug properties like binding affinities or 
kinetics. The main drawback of MD simulations is their high computational cost, 
incompatible with the large molecule screenings required during a drug discovery 
process [20]. We have working developing novel algorithms, inspired by the fields of 
reinforcement learning and active learning, to reduce the computational resources 
needed for MD simulations.  
 
Our research has mainly been focused on applying machine learning methods and 
Molecular Dynamics (MD) simulations to improve and speed up the drug discovery 
pipeline. The computational tools we have developed throughout the project are aimed 
to solve common problems and tasks encountered during the early stages of drug 
discovery, such as protein binding site prediction, protein-ligand binding affinity 
prediction, drug selectivity elucidation and molecular generative models. We have also 
developed some novel tools for ligand generation, based on the recent improvements 
in generative modelling, as an attempt to increase the automatization of drug design. 
The research performed by UPF inside the CompBioMed project has materialized in 
several applications, all made freely available through PlayMolecule or HTMD. 
 
All these novel solutions came directly from bringing the recent advances in machine 
learning and Deep Convolutional Neural Network (DCNN) for image recognition, which 
demonstrated superhuman performance on image recognition tasks, into structural 
biology and molecular medicine. Designing novel drugs is a complex process where 
multiple parameters have to be optimized, so as the designed compound can be 
administered to the body and bind strongly to a specific protein target. If the compound 
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will bind with the target is dependent on laws of physics, both on atomic and subatomic 
scale. As there are many factors affecting the interaction, computational modeling is 
hard and experimental validation is the most reliable source of data. However, with 
machine learning methods we can leverage the data and use it for novel predictions. 
Particularly, deep learning can be applied to extract complex patterns from simple 
representations. In this work we leverage deep learning to extract patterns from three-
dimensional representations of molecules. We developed models inspired by computer 
vision architectures, where both protein and the ligand are featurized in three 
dimensions using a grid with features representing different atom types or properties, 
such as hydrophobicity or aromaticity.  
 
DeepSite 
Given the recent success of DCNNs models in several computer vision applications, we 
started investigating the potential of said models in computational biology and 
chemistry applications. In a similar way to images, which are two dimensional arrays, 
usually represented by 3 channels (red, green and blue), we represented a protein / 
small molecule structure by 3 dimensional arrays, each corresponding to a different 
pharmacophoric property (i.e aromatic, hydrophobic, ionization…) or atom type. 
 

 
 

Figure 58. Depiction of the defined protein channels corresponding to different parmacophoric 
properties. 

 
One of the first applications using this representation as well as DCNN models was 
DeepSite [1], a binding site predictor (Figure 58). DeepSite is essentially a classifier 
trained in the scPDB [2] database. The protein structure is split into 16³ Å boxes, and 
then for each we predict whether each one is within 4 Å distance of the annotated 
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binding site. Essentially the procedure gives an entire probabilistic map of the protein, 
which can be then clustered in order to give point predictions. The project showed early 
promising results, surpassing the performance of several well-known algorithms.  
 
KDeep 

After DeepSite, we focused more on classical drug-discovery problems. In particular, we 
decided to concentrate our efforts in developing KDeep [3], a deep learning based 
protein-ligand scoring function (Figure 59). Given the structure of a protein binding site 
and the corresponding pose of a ligand, we featurize both in a similar way to the 
previous application, in a fixed sized 24³ Å box. Once these are computed, the goal is 
then to build a DCNN-based regression model. We chose PDBbind v.2016 [4] as the main 
database to train and test our model, since several groups have previously used it as a 
benchmark in the development of several scoring functions. With KDeep we show that 
DCNN like models achieve state of the art performance in absolute binding affinity 
prediction, by testing both on PDBbind, as well as several CSAR and external datasets. 
In particular, we show that current scoring functions tend to perform well when the 
ligands considered in a particular set belong to different enough chemical scaffolds, but 
performance significantly drops when predicting congeneric-like series. In fact, the 
proposed model has also been tested in the 4th D3R Grand Challenge, obtaining winning 
solutions for two out of three affinity ranking subchallenges. 
 

 
 

Figure 59. Network architecture description of KDeep. 
 
BindScope 
While developing KDeep, we realized that, because it was trained only over bound 
ligands, it was unable to discriminate between active or inactive ligands. For a complete 
virtual screening of large small molecule libraries, one needs to be able to discard 
inactive molecules on their target. Therefore, we developed a new deep learning-based 
tool for this task, BindScope [5]. The featurization is very similar to the one proposed in 
KDeep, but their goal is to discriminate between active and inactive ligands for a 
particular target using the DUDE database [6] of decoys (inactive ligands docked into 
protein structures). The presence of decoys in the training dataset provides BindScope 
the capacity to separate active ligands on a specific target from inactive ones, which 
KDeep is incapable of. The combination of BindScope and KDeep allows researchers to 
screen large small molecule libraries on a specific protein target, and not only select the 
active molecules, but also rank them according to their binding affinity. 
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DeltaDelta 
While we previously had evaluated our models using public databases such as PDBbind, 
it was clear, after talking to pharmaceutical companies, that their main use for scoring 
functions such as the ones we were proposing was their application in congeneric series 
ranking. A congeneric series is a set of molecules with small modifications, with the 
intent of improving them with respect to some pharmacokinetic parameter. However, 
the public databases our models were trained on featured a diverse set of protein-ligand 
complexes, making our models inadequate for predicting the small differences in affinity 
that were expected in the congeneric series setting.  
 
With that focus, we collaborated with several pharmaceutical companies, such as 
Janssen, Biogen and Pfizer, to both train and test DeltaDelta, a relative binding affinity 
predictor to be used on congeneric series. Our results show that said models can 
accurately interpolate between the binding affinities of a series using only a small 
fraction of the ligands as training data. Furthermore, they are significantly better than 
widely popular alternatives such as the empirical scoring functions provided by several 
docking protocols. Finally, it was shown that the performance of modern deep-learning 
alternatives can come close to rigorous simulation-based protocols such as free energy 
perturbation [7], at a fraction of the computational cost, and avoiding known problems 
such as the treatment of waters or ligand parameterization. 
 
LigVoxel / LigDream / LiGANN 
Our work on generative models led to the development of other two applications that 
we believe are of use in several drug-discovery pipelines. The first one is named LigVoxel 
[8], a DCNN-based ligand pharmacophore predictor (Figure 60). Contrary to our previous 
approaches, which output a single value for each structure subarray, this model is 
trained on pocket voxels and its output is its entire corresponding ligand subarrays, of 
the same size as the input. This model is able to reproduce important ligand chemical 
properties, such as hydrogen bonds or aromaticity, making it a valuable tool in structure 
based drug and pharmacophore design. Several tests were carried out in order to 
validate the output of the model on several hundreds of unseen structures, showing 
that in fact the proposed model produces sensible predictions.  
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Figure 60. Workflow description for LigVoxel. The protein pocket is featurised with the same 
pharmacophoric channels used in previous tools, and the network outputs suggested pharmacophoric 

areas for a ligand bound into the pocket. 
 
Next one, LigDream [9], is a shape decoding tool that decodes a voxelied molecule 
representation into SMILES strings (Figure 61). The model has been trained on 
compounds from drug-like ZINC15 [10] database. 3D conformations for the seed ligands 
are generated, followed by the vozel featurization used in our previous tools . Finally, 
three-dimensional convolutional and recurrent neural networks are used to to generate 
sequence of SMILES strings. Variability in SMILES outputs is obtained through distortion 
of voxelized representation and probabilistically sampling next possible SMILES token. 
 

 
 

Figure 61. Workflow description for LigDream. A shape representation of the seed molecule is created 
through a generative model, akin to the pharmacophoric description used in LigVoxel. Afterwards, the 

shape captioning network is used to generate SMILES sequences according to the same shape 
representation. 

 
Finally, LiGANN integrates both works into a structure-based de novo drug design tool 
that produces ligand structures based on protein pocket structures. Given a protein 
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shape, a generative adversarial network produces complementary ligand shapes (similar 
concept as Ligvoxel) in a multimodal fashion. Finally, a shape captioning network 
(LigDream) decodes the ligand shapes into SMILES strings.  
 
PathwayMap 
Early phases of drug-discovery are critical, since compounds initially deemed as 
interesting can later show to be problematic, due to lack of affinity towards a target, 
toxicity, or unspecificity. In this work we show the development of PathwayMap[11], a 
deep-learning-based model that uses self-normalizing neural networks for predicting 
the association of a compound towards a particular pathway, with the hopes of helping 
to reduce high attrition rates in drug discovery.  
 
We use the entire ChEMBL database of compounds [12] as well as the KEGG [13] and 
Reactome [14] pathway databases, also relying on information from Uniprot. This study, 
is to the best of our knowledge the most extensive one in terms of dataset size and 
evaluation, since most previous study ignore the multifunction compound problem. 
Neural networks can naturally tackle these in a multitask function, providing models that 
can be trained in hours and deployed with ease. Models were evaluated using a rigorous 
cross-validation procedure, using both random and scaffold-based splits. A collaboration 
with the pharmaceutical company Novartis also provided an external dataset in which 
to train and test our models using an even more realistic temporal split. Results suggest 
that the models can satisfactorily predict molecular pathway association, and we 
exemplify one of the uses of such models by identifying dark chemical matter, defined 
as compounds that seem lack affinity to a lot of targets.  
 
MD simulations and Machine learning 
Molecular simulation methods have always been hampered by sampling limitations over 
such distribution due to their computational cost. The advent of GPUs and GPU 
molecular dynamics software [15] was a notable improvement, greatly increasing the 
computational efficiency of simulations. This, combined with Markov state models 
(MSMs) [16] allowed to reconstruct a complete statistical description of the full 
dynamical system from many shorter trajectories, obtaining a description that is 
equivalent to reversible sampling, once at convergence.  
 
Running not one, but hundreds or thousands of simulation trajectories created a new 
opportunity to decide the starting conditions of these simulations in order to obtain the 
best equilibrium characterization at the minimal computational cost, i.e. adaptive 
sampling. Initially, adaptive sampling algorithms [17] were used to reduce statistical 
uncertainty by choosing conformations that contributed the most to the error in mean 
first passage time of a MSM, eigenvalues and eigenvectors , or choosing low state 
populations. In general the adaptive sampling policy was always empirical, not based on 
any mathematical decision process, even though the problem has been recognized as a 
multi-armed bandit problem before. 
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We have designed AdaptiveBandit, an adaptive sampling algorithm that casts the 
problem as a multi-armed bandit problem and uses an action value function and an 
upper confidence bound selection algorithm [18] to improve the performance of 
adaptive sampling and increase its versatility when faced with different free energy 
landscapes. AdaptiveBandit formally introduces adaptive sampling algorithms inside a 
multi-armed bandit frame-work and builds upon it to deliver a novel algorithm with 
increased performance and flexibility across different energy landscapes. 
AdaptiveBandit has showed that is able to perform equally or better than previous 
adaptive sampling algorithms in a diverse set of systems, and has proved its power to 
learn from the environment to modify its behaviour for an optimal performance. The 
bandit framework described can also be used in future works to develop novel 
algorithms based on theoretical work, instead of using simple heuristic policies.  
 
To summarize the collaboration impact of CompBioMed for the UPF, the research 
performed by UPF has been strongly reenforced by industrial collaborators, comprising 
CompBioMed Core partners as well as institutions outside the project.  
First and foremost, the entire research performed has been done in strong collaboration 
with Acellera. We have worked together to deliver our applications through a general 
and accessible platform, PlayMolecule. Our collaboration involved testing and 
deployment of our applications, making sure that our research and developments do 
not remain only as publications, but that they also produce solid tools accessible to 
everyone, including academia, industry and clinicians. 
Our industrial collaborations are not limited to Acellera, and we have also been working 
with another industrial Core partner inside CompBioMed, Jansen, on testing our 
application, DeltaDelta, with their internal datasets. The same was done with other 
external industrial partners, such as Pfizer, Novartis and Biogen.  
 
 
Regarding the commercial impact, most of the developed applications are available 
either through PlayMolecule or HTMD, solutions provided by Acellera, one of the core 
partners. Both solutions are freely available, but Acellera also provides personalized 
customer support on both of them as a service, in addition to custom deployments of 
PlayMolecule. Therefore, the developed applications have directly improved the quality 
of the products and services Acellera has to offer. 
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University College London: Supercomputers and binding affinities  

Drug development is a lengthy, complex, and costly process (it is estimated that and 
average of ~€2.2 billion is required to get a drug into the clinic [13]), and involves a high 
degree of uncertainty that any given candidate will actually succeed. It is increasingly 
recognised that this is compounded by the variation in response between patients, 
implying that we can no longer hope to produce "blockbuster" one-size-fits-all drugs for 
the entire global population [14]. Consequently, new approaches are required that 
facilitate better targeted treatments for subsets of patients. Our goal is to support this 
endeavour by developing simulation techniques that allow us to understand how drugs 
interact with their target proteins and how genetic variation can affect this.  
  
One example of where such knowledge could be applied in a clinical setting comes from 
anti-cancer therapy. The rapid drop in cost of next-generation sequencing technologies 
has led many cancer centres to begin deep sequencing patient tumours to identify the 
genetic alterations driving individual cancers, with the ultimate goal of making 
individualized therapeutic decisions based upon this data — an approach termed 
"precision" cancer therapy. This is approach is attractive as resistance to therapeutics is 
responsible for more than 90% of deaths in patients with metastatic cancer [15]. While 
drug resistance can emerge via multiple mechanisms, small changes (mutations) in the 
drug target protein are responsible for resistance in many patients; for some drug 
targets this mechanism causes as many as 90% of resistant cases [16]. While several 
common (recurrent) mutations have been catalogued due to their ability to induce 
resistance or susceptibility to particular kinase inhibitors, the vast majority of clinically 
observed mutations are rare, making catalogue-building alone insufficient for making 
fully informed decisions about the majority of individual patient tumours. There are two 
major strategies for countering this threat to treatment efficacy: tailoring the drug 
regimen received by a patient according to the mutations present in their particular 
cancer, and development of more advanced second- or third-line therapies that retain 
potency for known resistance mutations. In both cases, future developments require 
insight into the molecular changes produced by mutations, as well as ways to predict 
their impact on drug binding on a timescale much shorter than is typically 
experimentally feasible. Our research is designed to provide the foundations for both 
these approaches in the future. By basing our approach on physical models of the 
chemical processes involved our technology should be generally applicable, meaning 
that it is not limited to just the specific application areas we target initially. 
 
The binding affinity calculator (BAC) software developed within the molecular medicine 
strand of CompBioMed is at the heart of a research programme which aims to influence 
both industrial and clinical workflows. The common approach that under pins these 
goals is the generation of computational protocols which provide reproducible binding 
free energy estimates for ligand binding from molecular simulation. Our research has 
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sought to address this based upon a theoretical understanding of the utility of ensemble 
simulations to provide efficient sampling and meaningful uncertainty quantification [1]. 
This has led us to develop a suite of computational protocols which we call ESMACS 
(enhanced sampling of molecular dynamics with approximation of continuum solvent) 
and TIES (thermodynamic integration with enhanced sampling) [2]. The former based 
on the use of computationally inexpensive end point calculations and the latter more 
expensive but accurate “alchemical” binding free energy calculations. 
 
On a practical level we have applied this insight to looking into a diverse range of drug 
discovery targets with the aim of identifying the reasons for differing levels of success 
for existing methods when using datasets involving different proteins or ligands from 
different regions of chemical space (Figure 62). Much of this work has been conducted 
in a collaborative manner with the UCL team who developed BAC working with domain 
scientists from industrial associate partners Janssen, GSK and Pfiszer [3, 4, 5, 6]. This 
work has led to now protocols based on the use of different estimates of entropic 
components in end point calculations and replicas in alchemical free energy methods. 
Most recently we concluded a study applying our methods to problems in fragment-
based lead generation (FBLG) [7], providing computationally efficient extensions to the 
commonly used MMPBSA free energy calculation approach that allow it to be applied 
to drugs of varying charge, molecular weight and target binding site. These interactions 
have led the production of uf-BAC, a user friendly workflow tool designed to allow 
pharamaceutical collaborators to run BAC protocols on cloud resources. Uf-BAC is 
supported and developed by the spin out company (and CompBioMed associate 
partner) EnsembleMD.  
 
Alongside our work focussed on drug discovery problems we have investigated the 
influence of mutations on drug binding, an issue of direct relevance to the effectiveness 
of therapies in individual patients. In particular we have develop a variety of our TIES 
protocol which computes the difference in binding strength produced by point 
mutations [8]. Our work on protein mutations provides the background for our 
involvement in the INtegrated and Scalable PredictIon of REsistanace (INSPIRE) project 
[9]. This project aims to lay the foundations for the use of molecular simulation and 
machine learning to guide precision cancer therapy, in which therapy is tailored to 
provide maximum benefit to individual patients based on the genetic information about 
their particular cancer. It is vital that such an approach is based on predictive methods 
as the vast majority of clinically observed mutations are rare, essentially ensuring that it 
will be impossible that catalog-building alone will be sufficient for making therapeutic 
decisions.  
 
The project is a collaboration effort between UCL, the Memorial Sloan Kettering Cancer 
Centre (MSKCC), Argonne National Laboratory (ANL) and Rutgers University. Through 
the US DoE INCITE project INSPIRE was awarded compute time on first the Titan machine 
at Oakridge and now the world’s most powerful supercomputer Summit. A key goal of 
the project is to develop a computational architecture hat allows the scaling of 
molecular dynamics and machine-learning workflows to take advantage of future 
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generation of exascale resources. For the machine-learning component of the project 
we have leveraged ANLs participation in the Exascale Deep Learning and Simulation 
Enabled Precision Medicine for Cancer (CANDLE) project [10] to develop tools that scale 
to use thousands of nodes for deep learning tasks. The development of molecular 
dynamics workflows towards exascale capabilities has built upon the software 
developed to conduct simulations across the hundreds of thousands of cores of the 
SuperMUC machine, based at the Leibniz Supercomputing Centre (LRZ) near Munich 
[11]. The middleware developed, known as HT-BAC was awarded the SCALE 2018 prize 
at CCGrid 2018 conference [12]. 
 

 
Figure 62. Structure of the lactate dehydogenase A (LDHA) protein with a bound ligand. Two disctint 
binding sites (adenine and substrate) to which fragments bind are highlighted in blue and cyan. A so-
called “bridging ligand” which is built up by joining fragments binding each site is shown in chemical 
representation. Right: ESMACS simulation results incorporating variational entropy (ΔGMMPBSA-TΔSvar) 

estimates correlate well with experimental values (ΔGexpt) even for drugs binding to different sites. This 
is typically a challenge for cheap computational methods. 

 

 

Regarding the collaboration impact for UCL thanks to CompBioMed, UCL has an ongoing 
research collaboration in which Janssen provide targets and datasets and researchers 
from UCL and Janssen collaborate to develop and employ new methods in molecular 
dynamics based free energy calculations. Also, UCL, the Memorial Sloan Kettering 
Cancer Centre (MSKCC), Argonne National Laboratory (ANL) and Rutgers university 
collaborate to investigate drug resistance in tyrosine kinases. The collaboration seeks to 
combine molecular simulation with machine learning to enhance resistance prediction 
beyond what is possible from clinical and experimental data alone. Then, 
DNAnexus/UCL/EnsembleMD collaborate together on development support and credit 
for cloud compute time provided by DNAnexus to allow UCL and EnsembleMD to 
develop uf-BAC to run BAC workflows in a secure cloud environment. Finally, 
Azure/UCL/EnsembleMD work together on development support and credit for cloud 
compute time provided by Azure to allow UCL and EnsembleMD to develop uf-BAC to 
run BAC workflows on their HPC cloud platform. 
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It is worth to mention the commercial impact of CompBioMed for UCL: the work 
described here has led directly to the formation of the spin out company EnsembleMD. 
The aim of the company is to provide cloud based simulation solutions based on 
ensemble molecular simulations and consulting services to the pharmaceutical sector. 
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Janssen: Molecular Dynamics for drug discovery programs 

A ‘people’ definition of industrial computational chemistry includes a group of molecular 
modelling experts who use computational techniques, mostly to help molecular design 
in collaboration with medicinal chemists. Whilst other areas of application exist (such as 
in early target validation) this project will focus on methodologies that can make a 
significant step forward in the quality of molecular design. It can be argued that the 
current toolbox of an industrial computational chemist, despite incremental change, has 
not seen any fundamental improvement for over 10 years. Clearly challenge and 
investment are needed to learn if new methodologies can provide impact. In this project 
we studied new methodologies in areas of molecular dynamics calculations, and more 
accurate binding energy predictions.  
 
Traditional industrial computational chemistry is highly dependent on a small selection 
of approaches such as virtual screening, molecular docking, ligand similarity etc. 
Structure-based drug design, where typically an X-ray crystal structure of the target is 
available, permits docking to help molecular design. Pose prediction with docking, that 
is correctly placing the ligand in the right orientation in the binding site, is typically 
considered an achievable task. Docking can also show virtual screening enrichment, 
which means separating a structurally diverse set (such as a random high throughput 
screening collection) of actives from inactives. However, it is widely recognized, that for 
a congeneric series of structural analogues, such as the case in a drug discovery lead 
optimization program, docking methodologies are unable to differentiate or rank highly 
active from inactive molecules. Hence, computational structure-based design remains 
largely qualitative and based on visual assessment and discussion and prioritization of 
results within project teams. This leads to various limitations, such as the number of 
molecules which can plausibly be docked and reliably assessed in this labour-intensive 
way.  
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Various fundamental computational methodologies have existed for a long time but 
remain largely unused in an industrial computational chemistry setting. Molecular 
Dynamics (MD) is one of these. By using Newton’s classical equations of motion, 
computational simulations study the conformational changes of a protein (for instance) 
with time. Whilst these methods have existed for many decades, only now is it becoming 
feasible to consider running MD simulations for time scales that are relevant for issues 
of importance for drug discovery. At the same time, computational chemistry is 
undergoing significant changes due to access and porting of algorithms to Graphics 
Processing Unit (GPU) hardware. GPU’s provide thousands of cores and offer a cheap 
highly parallel architecture which is efficient for computational approaches such as MD. 
During the past several years major steps have also been made in the practical feasibility 
of calculating free energies of binding of small molecules to proteins from the 3D 
structure of the protein-ligand complex. Important factors include improved molecular 
force fields, better conformational sampling, and faster hardware. Free energies of 
binding can now be calculated to within 1 kcal/mol accuracy, which is much better than 
commonly used approaches like molecular docking. This level of accuracy has the 
potential to radically increase the impact of computational design to drug discovery. 
Development of methods and best practices for free-energy calculations, as carried out 
in this project, will enable more effective computational design of drug candidates for 
globular proteins and membrane-bound targets. 
 
Within a drug discovery portfolio many targets exist which may be more or less 
amenable to a structural biology approach, which can then permit structure-based drug 
design. Kinases and phosphodiesterases for instance contain soluble catalytic domains 
which can typically be crystallized in the presence of small molecule inhibitors. This 
provides significant benefit for molecular design and the subsequent computational 
docking can be performed with high confidence in pose prediction. Our work in this 
project aimed to create a greater understanding of new computational methods for drug 
discovery projects. Ultimately, accurate prediction of binding modes and binding 
energies will reduce the number of compounds required to be synthesized in typical lead 
optimization drug discovery programs. 
 
Computational docking 
Over the last three decades structure-based methods have taken a prime place in the 
drug discovery process. In the early pre-clinical process, lead optimization is known to 
be one of the most expensive tasks. Herein virtual screening, including molecular 
docking, is a tool to reduce costs by computationally differentiating actives from decoys 
before actual synthesis has been performed. Furthermore, computational methods can 
be used to steer the huge number (100’s to 1000’s) of compounds that are tested on 
one or more targets to yield indications of ligand affinity (e.g. IC50/EC50 and KI values). 
Hence a prime objective in computational chemistry is therefore the accurate prediction 
of such affinity values. Still, while useful to differentiate between actives and decoys, 
docking has been relatively unsuccessful in prediction of binding affinity (Figure 63). 
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Figure 63. Sketching the problem. Structure-based methods, while generally performing acceptable for 
ligand pose generation, perform poorly in terms of affinity prediction. This case for the Adenosine A2A 

receptor (A unpublished results). Moreover, a similar effect is observed in a prospective application 
performed for a soluble protein (PDE2) inhibition project in Janssen (B unpublished results). This project 

proposal will apply more accurate prediction methods and will measure experimental affinities to 
validate the methods used. 

 
Given the insufficient predictive performance of docking, improving the quality of 
docking scoring is an active area of research. Ultimately one of the main issues is that 
scoring functions are deliberately parameterized to keep them as fast as possible to 
enable large scale virtual screening of hundreds of thousands or millions of molecules. 
Application in a lead optimization program where one typically deals with a few dozen 
compounds per week would allow much higher quality but slower approaches.  
 
Affinity Prediction: Free-Energy Perturbation  
Building on the recent advances in MD brings the realm of Free-Energy perturbation 
(FEP) calculations closer to a reality for application in industrial projects with short 
timelines. FEP has previously shown to be a promising in silico technique to estimate 
binding affinities. State of the art methods such as docking have proven to perform 
poorly in this task as mentioned above. Hence, free-energy simulations are a most 
valuable approach. A variety of free-energy simulation methods including FEP, use 
molecular dynamics or Monte Carlo (MD/MC) simulations to assess the free-energy 
difference between two related ligands via either a chemical or alchemical path. In fact, 
in a typical lead optimization program, the calculation of the relative difference in 
binding energy between two compounds is a leading principle as touched upon 
previously. Interestingly, this relative difference is more easily computed than the 
‘absolute’ binding free-energy of a single compound. FEP calculations per se are not 
new. Based on the ideas of Zwanzig, FEP was applied in the 1970s and 1980s, when a 
number of research groups presented the first concepts of free-energy methods. 

A B 
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However, lack of compute power, limited parameterization in early force fields, and 
other reasons impeded substantial progress in the field despite its attractiveness. 
 

Recent advances in a number of areas such as better force fields, novel sampling 
algorithms, and low-cost (GPU-based) compute power can now deliver the level of 

accuracy and speed required for a typical drug discovery project. Combined with the 
large increase in structures available in the public domain and in house this opens the 

door for routine application of structure-based methods such as FEP, in drug discovery ( 

Figure 64). Yet before this is a reality, it is imperative that the shortcomings and limits 
of FEP are assessed systematically. Janssen have invested substantially in bringing FEP 
protocols to the drug discovery pipeline, in this project we explored the scope of open-
source methods and techniques used in leading academic laboratories all in a pre-
competitive manner. 
 

 
 

Figure 64. Figure adapted from the publication of Wang et al. (JACS, 2015) (A) FEP workflow for the 
prediction of protein–ligand binding affinity. A number of computational steps during the perturbations 
are mentioned. (B) Mapping the perturbations starting from compound 11, an adenosine A2A receptor 

ligand, onto a set of pathways generated from the workflow for a total of nine ligands. Each arrow 
represents FEP calculations performed both in the receptor and in solution, for both ligands linked by 

the arrow. (C) Graph of calculated and experimental binding affinities for the nine adenosine A2A 
receptor ligands. 

 
Drug Discovery process 
The research and development (R&D) process is lengthy and expensive, especially 
during later clinical stages. During the early phases of drug discovery, a lot of weight is 
therefore placed on pursuing well-validated pathophysiological mechanisms or targets. 
‘Validation’ can be achieved via tissue expression profiling (including comparisons 
between healthy and disease states); 2) genetic association studies; 3) phenotypic 

A B 

C 
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analysis of transgenic animals; and 4) conducting in vivo/in vitro pharmacological studies 
with target-active tool (pre-lead) molecules. Absorption, distribution, metabolism, and 
excretion (ADME) and pharmacokinetic (PK) studies are employed early on in the drug 
discovery process to assist in the interpretation of in vivo experimentation. If a drug 
target survives this initial validation gauntlet, it then proceeds to primary drug 
screening, where small molecules and/or biological compounds are tested for the 
desired pharmacological intervention at the specified target. A target-centric modus 
operandi is followed where high throughput screens and follow-up assays during lead 
optimization are most used to drive molecular design. In this manner a portfolio of many 
targets is pursued with the best compounds for optimal targets ideally passing through 
to clinical evaluation.  
 
New computational approaches described above can have a major impact on this drug 
discovery process. Importantly the work studied here will go to the heart of the design-
make-test cycle and contribute higher quality methods for compound prioritization. This 
is a fundamental issue of drug discovery, because, whilst compounds with acceptable 
potency can often be found, and found quickly, they do not always come with the 
desired ADME or PK properties described above. Hence, during a typical lead 
optimization program the challenge often becomes to maintain potency whilst 
modifying the chemical structure of the lead molecules to overcome these other issues. 
In this regard computational tools which can accurately predict binding mode (i.e. high-
quality homology modelling and docking) combined with accurate binding affinity 
prediction (free energy perturbation (FEP) methodologies) will be extremely powerful 
and reduce the number of ‘backwards’ steps required to subsequently move forwards 
in an LO program.  
 
Janssen’s primary interests in the CompBioMed project are in developing and using 
advanced molecular simulation methods to optimize lead compounds in discovery 
programs. Such methods, if proven robust and accurate could have a profound impact 
on the way drug discovery is performed. They would permit reliable computational 
triaging of very close analogue molecules greatly improving efficiency. Also, this would 
lead to high-confidence design of synthetically more challenging molecules leading to 
better drugs in new chemical space. Also, we envisage the accurate prediction of 
compound binding for targets that have mutated residues. This latter application can be 
of value in diagnostics, by predicting the best possible compound for a patient clinically 
(personalised medicine), but is also of use in discovery, where mutated targets occur 
regularly in antibacterials, antivirals, and oncology compounds. 
 
We will summarize the CompBioMed impact for Janssen by describing the main 
collaborations within the project. 
 
Collaboration Janssen - UCL 

Janssen collaborated with UCL on calculation of free energies of binding on public and 
on Janssen internal compound sets (targets BRD4, LDHA and PDE2). A manuscript was 
co-written and accepted for publication on the BRD4 application (see Figure 65).  
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Figure 65. Overview of the ESMACS workflow. The 1traj protocol is shown in (a) consisting of an 
ensemble of 1 to N (25 in this study) simulations of the protein-ligand complex. Each simulation is made 

up of (min)imisation and two (eq)uilibration steps and a single production NAMD run which are each 
analysed independently using the MMPBSA.py script. The output of the analysis is then collated and 

bootstrap statistics produced. The multiple trajectory approaches, shown in (b) follow a similar outline 
but with independent trajectories also run of the ligand system alone. 

 
A second manuscript is under review describing the LDHA application. Both cases have 
led to learnings about the suitable application of MMPBSA, so called ESMACS approach, 
for the calculation of binding free energies. It clearly is best suited for chemically diverse 
compounds and can deliver qualitatively useful results. Our work has particularly 
focused on understanding accurate method to account for explicit water molecules and 
entropic effects (Figure 65, Figure 66).  
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Figure 66. Comparison of binding free energies computed using 1traj MMPBSA based ESMACS protocol 
incorporating variational entropy. Ligand data points are coloured according to the pocket(s) to which 

they bind and a dashed grey line indicates the best fit using linear regression. 
 
A third large and extensive study has been completed and a manuscript written and 
ready for submission to publication. This study has involved the use of alchemical 
perturbation methods, the TIES approach was performed at the UCL group, and the FEP+ 
approach at Janssen. Results have been performed for multiple perturbations from 
various protein targets. Shunzhou Wan from the UCL group also visited the Janssen site 
in Belgium as part of this project. A particular focus has been to investigate the precision 
of both methods when submitted to extensive repeated trial calculations. The TIES work 
has also required new replica exchange methodology recently implemented for TIES in 
the Coveney group. This work has uncovered that multiple repeats are necessary for 
improved accuracy and shorter simulations are performing better than individual longer 
simulations (Figure 67).  
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Figure 67. Comparison of the predicted binding free energy differences with the experimental data from 
the four approaches. 

 
Collaboration Janssen – UPF/Acellera 

Janssen collaborated with UPF/Acellera to test machine learning methods derived from 
protein ligand binding datasets, and used them to predict relative binding free energies. 
Scientists at Janssen visited the labs of Prof Gianni Fabritiis and worked with scientists 
there to optimize their approach. UPF/Acellera developed the first generation of the 
models based on publicly available datasets from PDBbind, and Janssen compiled 
datasets of PDE2, PDE3 and PDE10, BACE1 and ROS1 kinase bioactivities. The models 
were tested, retrained and tested again on these drug discovery lead optimization 
datasets. Performance was studied using chronological ordering of compounds but also 
in the context of optimal predictions, comparing the number of iterations of predictions 
that could be required to reveal the most active compound, compared to the established 
chronological order. The work is part of a manuscript that is under review for 
publication. 
 
Janssen internal research for CompBioMed 

Within Janssen we evaluated the use of GROMACS for Free Energy Perturbation. We 
streamlined the application of FEP with GROMACS and ran calculations at SurfSARA. 
Calculations were performed and compared with Schrodinger’s FEP+ software. We 
studied multiple datasets, generating lots of valuable insights on the strengths and 
limitations of GROMACS FEP. Our work showed qualitative agreement for GROMACS 
FEP with the commercial FEP+ software, very encouraging results for future work. It also 
showed that certain protein and ligand systems such as metal containing binding site or 
large conformational changes in ligands are beyond current FEP calculations. Parts of 
this work were included in our recent publication [4]. 
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Janssen completed a study demonstrating the use of MD for understanding functional 
activity of allosteric modulators. This work is published online. It is part of our initiative 
to understand the value of MD simulations in computational drug discovery and was 
performed by our CompBioMed-funded postdoc at Janssen [5].  
 
Janssen – HPC interactions 

During the project we benefited from excellent support by the HPC experts at SURFsara 
to enable setup and running of our FEP and MD calculations using GROMACS software 
on the Cartesius HPC infrastructure. 
Also, during the project, Janssen has been a partner in two successful bids for HPC 
resources led by UCL:  
• 32M core hours on SuperMUC in 2017-19, and on DoE Titan in an INCITE award 

worth around 100M core hours between 2018-2019. These grants are for work on 
binding affinity prediction. 

 
References for this section 
[1]. David W. Wright, Shunzhou Wan, Christophe Meyer, Herman van Vlijmen, Gary 
Tresadern, Peter V. Coveney. Application of ESMACS binding free energy protocols to 
diverse datasets: Bromodomain-containing protein 4. Nature Sci Rep, 2019, 9:6017. 
[2]. David W. Wright, Shunzhou Wan, Christophe Meyer, Herman van Vlijmen, Gary 
Tresadern, Peter V. Coveney. Application of the ESMACS binding free energy protocol 
to a highly varied ligand dataset: LDHA. Manuscript under review. 
[3]. David W. Wright, Shunzhou Wan, Laura Perez Benito, Herman van Vlijmen, Gary 
Tresadern, Peter V. Coveney. Study of Precision and Accuracy of Alchemical Relative 
Free Energy of Binding Predictions. TIES and FEP+. Manuscript under preparation.  
[4]. Laura Pérez-Benito, Nil Casajuana Martin, Mireia Jiménez-Rosés, Herman Van 
Vlijmen, Gary Tresadern. Predicting Activity Cliffs with Free Energy Perturbation. J. 
Chem. Theory. Comput. 2019, 15, 1884−1895. 
[5]. Claudia Llinas del Torrent, Nil Casajuana-Martin, Leonardo Pardo, Gary Tresadern, 
Laura Pérez-Benito. Mechanisms Underlying Allosteric Molecular Switches of 
Metabotropic Glutamate Receptor 5. J. Chem. Inf. Model. 2019, 59 (5), 2456-2466. 

EVOTEC: G-protein activated structures modelling for large-scale computers 

Evotec (UK) Ltd, as a leading industrial application partner, is responsible for four key 
objectives: adaptation of hierarchical G-Protein Coupled Receptors (GPCR) modelling 
protocol (HGMP) to HPC platform, developing of the new HGMP-HPC based tools / 
plugins that require high scale calculations, testing and application of HGMP-HPC 
integrated technology in real drug discovery cases within the CoE and to make it 
available to third parties seeking assistance from the CoE and/or from Evotec, and 
dissemination of the results of this work to our partners in academia and in pharma & 
biotech companies in order to stimulate follow-on research. Evotec has also published 
the outcome of this work in peer-reviewed journals and at scientific conferences. Evotec 
(UK) Ltd (Dr Alexander Heifetz) has established a close collaboration with UCL (group of 
Prof Andrea Townsend-Nicholson) [1]. In the framework of this collaboration, they 



  D2.4 Report on the Impact of Modeling and Simulation within  
Biomedical Research as enabled by CompBioMed 

 

PU Page 106  Version 1.0 
 

“This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Grant Agreement No 675451“ 

 

developed computational methodologies for structural exploration and tools for drug 
design, described as follows: 
 
Rationalizing the receptor-ligand binding and drug-candidates’ residence time [2]. 
Drug-target residence time, the length of time for which a small molecule stays bound 
to its receptor target, has increasingly become a key property for optimization in drug 
discovery programs. However, its in silico prediction has proven difficult. Here we 
describe a method, using atomistic ensemble-based steered molecular dynamics (SMD), 
to observe the dissociation of ligands from their target G protein-coupled receptor in a 
time scale suitable for drug discovery. These dissociation simulations accurately, 
precisely, and reproducibly identify ligand-residue interactions and quantify the change 
in ligand energy values for both protein and water. The method has been applied to 17 
ligands of the A2A adenosine receptor, all with published experimental kinetic binding 
data. The residues that interact with the ligand as it dissociates are known 
experimentally to have an effect on binding affinities and residence times. There is a 
good correlation ( R2 = 0.79) between the computationally calculated change in water-
ligand interaction energy and experimentally determined residence time. Our results 
indicate that ensemble-based SMD is a rapid, novel, and accurate semi-empirical 
method for the determination of drug-target relative residence time. 
 
Computational prediction of GPCR oligomerization [3] 

There has been a recent and prolific expansion in the number of GPCR crystal structures 
being solved: in both active and inactive forms and in complex with ligand, with G 
protein and with each other. Despite this, there is relatively little experimental 
information about the precise configuration of GPCR oligomers during these different 
biologically relevant states. While it may be possible to identify the experimental 
conditions necessary to crystallize a GPCR preferentially in a specific structural 
conformation, computational approaches afford a potentially more tractable means of 
describing the probability of formation of receptor dimers and higher order oligomers. 
Ensemble-based computational methods based on structurally determined dimers, 
coupled with a computational workflow that uses quantum mechanical methods to 
analyze the chemical nature of the molecular interactions at a GPCR dimer interface, will 
generate the reproducible and accurate predictions needed to predict previously 
unidentified GPCR dimers and to inform future advances in our ability to understand and 
begin to precisely manipulate GPCR oligomers in biological systems. It may also provide 
information needed to achieve an increase in the number of experimentally determined 
oligomeric GPCR structures. 
 
FMO-DFTB tool for rapid analysis of receptor-ligand interactions [4] 

The reliable and precise evaluation of receptor-ligand interactions and pair-interaction 
energy is an essential element of rational drug design. While quantum mechanical (QM) 
methods have been a promising means by which to achieve this, traditional QM is not 
applicable for large biological systems due to its high computational cost. Here, the 
fragment molecular orbital (FMO) method has been used to accelerate QM calculations, 
and by combining FMO with the density-functional tight-binding (DFTB) method we are 
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able to decrease computational cost 1000 times, achieving results in seconds, instead of 
hours. We have applied FMO-DFTB to three different GPCR-ligand systems. Our results 
correlate well with site directed mutagenesis data and findings presented in the 
published literature, demonstrating that FMO-DFTB is a rapid and accurate means of 
GPCR-ligand interactions. This action was performed in collaboration with Dr Dmitri 
Fedorov from National Institute of Advanced Industrial Science and Technology (AIST), 
Japan. 
 
FMO-PPi tool of inter-helical interactions of G-protein coupled receptors. 
G-protein coupled receptors (GPCRs) are the largest superfamily of membrane proteins. 
They regulate almost every aspect of cellular activity and are key targets for drug 
discovery. However, the molecular forces responsible for holding together the seven 
helices of the GPCR bundle and ensuring receptor stability, ligand binding and activation 
have not been identified. Even with crystal structures in hand, the strength and chemical 
nature of these forces cannot be characterised by visual inspection alone and therefore, 
accurate and reliable computational methods must be employed. Quantum mechanics 
(QM) approaches can be used to provide this information but they are computationally 
expensive. However, the fragment molecular orbital (FMO) QM method offers an 
excellent solution that combines accuracy, rigour and speed. FMO run for one full sized 
receptor took only two hours on 340 CPU cores. Here, we have applied FMO to 35 crystal 
structures representing different branches of the class A GPCR family to characterise the 
strength and chemical nature of the inter-helical interactions between the residues of 
transmembrane (TM) domains in different receptor activation states. Our approach has 
yielded novel results that are consistent with and help to rationalise experimental data. 
We have identified 69 topologically-equivalent TM residues of class A GPCRs that form 
a consensus network of 51 inter-TM interactions. This discovery provides a 
comprehensive picture of how various molecular forces govern the inter-helical 
interactions, which in turn support structural stability, ligand binding and activation of 
GPCRs. Our findings also provide molecular insights into how ligand binding can affect 
the overall structural properties of these key signalling proteins. At Evotec, we are 
already intensively applying this information in our internal drug discovery projects and 
see how important it is. Academic colleagues are doing the same in their research with 
equal success. This action was performed in collaboration with Dr Dmitri Fedorov from 
National Institute of Advanced Industrial Science and Technology (AIST), Japan. 
 
These tools are intensively used by Evotec in its internal drug-discovery projects and 
disseminate it among its clients. The outcome of this work we published in many high 
profile peer-reviewed journal, presented in various international conferences and 
summarised in two books two books published by Springer: ‘Computational Methods 
for GPCR Drug Discovery’ (https://www.springer.com/gp/book/9781493974641) and 
‘QM methods for drug discovery’ (ongoing, will be published in 2020), edited by Dr 
Alexander Heifetz.  
 
Additionally, and to increase the impact, Evotec (Alex Heifetz) provided a training 
session in the CompBioMed & BioExel Free-Energy Workshop, London, 31 May 2017; 
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and at the CompBioMed winter school in Barcelona in February 2018 and in February 
2019 on the subject of 'Introduction to Computer-Aided Drug Design (CADD) and GPCR 
Modelling' illustrated by examples from real drug discovery projects. Videos of both 
these sessions are available via the CompBioMed YouTube channel. 
 
We further developing and optimising these tools to make them even more user-friendly 
and integrated. 
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Neuro-musculoskeletal Exemplar Research 

University of Sheffield: from tomography to bone simulations 

In Sheffield, the Computer Tomography to Strength (CT2S) has been successfully rolled 
out and tested on ShARC (Sheffield Tier-3), and applied to more than 110 patients so far. 
The service uses hip CT scans to generate personalised finite element models of the 
femurs, and ran simulations to predict the femoral strength in order to predict the risk 
of osteoporotic fracture (Figure 68). The service has recently been linked to the Sheffield 
Teaching Hospital, where a clinical staff can send a request for a set of patient CT scans 
to be analysed with a report being returned (within 1-2 days) to detail the risk factors. 
An abstract describing the CT2S workflow has been accepted to the CompBioMed 
Conference in Sep 2019. The research work has also resulted in publications [1,2].  
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Figure 68. The range of sideways fall loading directions tested in the algorithm. Reproduced from Altai 

et al. (2019), Clinical Biomechanics. 
 
Currently, the algorithm used in CT2S has been further developed in multi-scale 
modelling approaches, where the loads obtained from gait analysis were used to study 
the biomechanical response of the femur during level walking and daily activities (Figure 
69). These results are ready to be published, with the paper in preparation. 
 

 
Figure 69. Integrating muscle and joint contact forces predicted from musculoskeletal model with organ-

scale finite element model in order to study the biomechanics of the femur during daily activities. 
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Figure 70. Loss in bone strength (in Newtons) for different fall impact orientations (horizontal axis) 
following loss in FN-aBMD from 0.66 g/cm2 to 0.627 g/cm2. Loss of bone strength predicted by bone loss 
law (black boxes) is much smaller in magnitude and population variability than that predicted by linear 
regression relationship between bone strength and FN-aBMD (blue boxes). Median and 25th and 75th 
percentile values are denoted by the target and the upper and lower edges of the boxes respectively. 

 
The CT2S workflow has employed in an in silico study that investigates the effect of 
ageing on bone strength. A bone loss law has been developed that describes how local 
volumetric bone mineral density (vBMD) decreases as the areal bone mineral density 
(aBMD) at the femoral neck (FN) decreases during ageing. Combined with the CT2S 
workflow, this framework leads to a determination of how fall orientation specific bone 
strength changes due to ageing, such as following a 5% decrease in FN-aBMD. Figure 70 
shows that changes in bone strength are much smaller in magnitude and variability 
when predicted using bone loss law than when predicted by linear regression. This 
highlights that bone strength loss really depends on the individual’s bone shape and size 
and on how vBMD is distributed spatially within the bone. 
 
The CT2S service is currently being used by the Sheffield Teaching Hospitals to process 
patient data and predict the risk of osteoporotic fracture. The algorithm is also used by 
clinicians at the Sheffield Children’s Hospitals for research purposes in the application 
of child abuse. Other research users include the Flinders University (Australia) and the 
University of Wisconsin (USA). 
 
The BoneDVC algorithm has been used to validate micro-finite element models of the 
mouse tibia for preclinical assessment of the effect of interventions for musculoskeletal 
diseases [3]. The BoneDVC has been also used to evaluate the reproducibility of a typical 
approach used to study the effect of mechanical loading on the bone remodelling [4]. 
The elastic registration library within the BoneDVC algorithm has been used to study the 
prenatal joint geometrical changes in a mouse model which will be used in the future to 
evaluate the effect of loading on joint development [5]. In another application the 
BoneDVC algorithm was used to study the uncertainties in strain measurements in the 
cortical bone by using high resolution Synchrotron micro computed tomography images 
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[6]. Finally, the BoneDVC has been used to validate computed tomography (CT) based 
subject specific finite element models of the human scapula by using a combination of 
CT scans, microCT scans and in situ loading with a six degree-of-freedom hexapod robot 
[7,8].  
 

As part of the BoneDVC service, the Sheffield-based image processing software SHIRT 
has been rewritten in order to make it easier to parallelise on HPC system. The new 
software is called pFIRE. It has been deployed and tested on ShARC, ARCHER, 
MareNostrum. The software is available to download via Github with a set of dedicated 
tutorials to get the users started (https://insigneo.github.io/pFIRE/tutorial.html). 
 
A training session of pFIRE was provided at the 2019 CompBioMed Winter School in 
Barcelona, which was well received, with more researchers subscribed to use the 
software. 
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