Using machine learning to understand the molecular properties that confer extended drug-target residence time

Andrew Potterton, Alexander Heifetz, Peter Coveney and Andrea Townsend-Nicholson

Introduction: Residence time is important in drug discovery

There is a weak correlation between GPCR kinetic and equilibrium binding values

- Great levels of attrition in drug discovery
- nM binders have great variability in residence time
- In vivo efficacy GPCR ligands has been proven to be linked to residence time
- Notable reviews suggest that residence time should be optimized in hit to lead and lead optimization phases of drug discovery

GPCRs

- 7TM helical structure
- 35% of drugs target GPCRs
- Cardiac, neurological and respiratory therapeutic targets

Kinetic Database

- Scraped publications for 550 entries
- Mainly radioligand kinetic binding assays
- Database contains:
 - 2D chemical structure
 - Kinetic binding data (temperature corrected)
 - Equilibrium binding data (K_D/K_i)
 - Clinical trials data

Receptor	GPCR Class	No. of entries	No. of unique ligands
5-HT ₂₄	А	1	1
5-HT _{2B}		7	7
Adenosine A ₁		63	50
Adenosine A2A		50	44
Adenosine A2B		3	3
Adenosine A ₃		65	56
α_{2A} Adrenergic		8	8
α_{2A} Adrenergic		8	8
β_1 Adrenergic		5	5
β_2 Adrenergic		32	20
Cannabinoid Type 1		12	10
Cannabinoid Type 2		24	23
C-C Chemokine Type 2		39	27
Histamine H ₁		67	29
Muscarinic Acetylcholine M2		17	8
Muscarinic Acetylcholine M3		39	27
μ -Opioid		10	9
Tachykinin NK1		7	7
Orexin Type 2		6	6
Corticotropin-Releasing Hormone 1	в	23	21
Metabotropic glutamate mGluR2	С	51	50

Summary of ligand entries in database

Correlations in data

- No correlation between logP, TPSA, number of hydrogen bond capable atoms and RTs of GPCR ligands
- The only two 2D properties that have any sort of weak correlation are: molecular weight and number of rings/aromatic rings

COMBINE analysis overfits to training data

MSE train: 0.36 MSE test: 0.75 R² train: 0.55 R² test: 0.01

Index	Elec_6.51	Elec_6.55	Elec_6.56	Elec_7.31	Elec_7.38
5HT2A_[3H	-0.335378	-3.27144	0.0199144	0.532463	-0.586971
5HT2B_Cab	-0.002424	-1.64923	0.0683889	-0.137797	-0.95084
5HT2B_Dih	0.143263	-1.90207	-0.0405811	-0.499482	0.468004
5HT2B_Erg	-0.774223	-0.836446	0.118652	-6.1999	-0.203607
5HT2B_Per	0.0374144	-1.45491	0.0412556	-3.70494	-0.891994
5HT2B_Ser	0.0931056	-1.95418	-0.0554067	0.0308267	-0.469427
5HT2B_[12	-0.211303	-1.99219	-0.0156267	-0.0710678	0.20127
5HT2B_[3H	-0.634743	-2.30593	-0.006783	-0.223672	0.24026
A1_13-Dua	-1.14945	-8.50936	0.119008	-0.164228	0.0527778
A1_19-Dua	-1.49955	-12.8792	0.298646	0.0953889	-0.200359
A1_22-Dua	-1.56403	-12.6211	0.233458	-0.01549	-0.0924344
A1_33-Dua	-1.43365	-12.5266	0.188422	-0.179567	0.203439
A1_35-Dua	-1.5789	-12.3627	0.207316	-0.167307	0.13924

Combination of molecular properties predicts RT

Relative Importance

Next steps

- Adding more features:
 - ECL2 flexibility
 - Binding site flexibility
 - Adding spare matrices of experiment data to see if this improves prediction scores

Acknowledgments

Professor Andrea Townsend-Nicholson

Dr Alexander Heifetz

Professor Peter Coveney

Email: andrew.potterton.13@ucl.ac.uk

London Interdisciplinary Doctoral Programme @ UCL, KCL, QMUL, Birkbeck, LSHTM, RVC

Compute resources used:

UCL