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Drug Design

What to make next? How to make it?
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The Design Make Test Analyze cycle in Drug Design

Chemical starting 

point (“Hit”) found 

through HTS, DEL, 

fragment screening or 

knowledge

• Weakly active

• Target unselective

• Toxicity risk

• Low metabolic 

stability

~3 

years

Candidate drug

• Highly potent

• Effective in in vivo

models

• Metabolically stable

• No toxicity issues

10s-100s of DMTA cycles 

3-6 weeks per cycle 

Hand-overs between multiple 

labs

Drug

target Design

Make

Test

Analyse



Augmented Drug Discovery
How can we reduce the time to deliver a clinical candidate?
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Select the most 
efficient synthetic 
route

Make more 
compounds in each 

cycle

Design

Make

Test

Analyze

Maximize learningIncrease speed



Key priority areas in ML/AI

5

Deep learning based de novo 
molecular design

Synthesis Prediction

More accurate property predictions 

Decision making under uncertainty

+



Neural Networks & Deep Learning
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• Neural Networks known for decades

• Inputs, Hidden Layers, Outputs

• Single layer NNs have been used in QSAR 

modelling for years

• Recent Applications use more complex 

networks such as

• Multi-layer Feed-Forward NNs

• Convolutional NNs

• biological image processing

• Auto-encoder NNs

• Recurrent NNs

• Trained using Maximum Likelihood 

Estimation to maximize the likelihood 

of next character
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Why? Generation of Novel Compounds in the 1060

Chemical Space!

10601010-1012

Journalist units:

Known space: 0,00017 ng of Hydrogen atoms

Possible space: The Hydrogen atoms in 90 Suns

Where´s the impact?

• Use for de novo Molecular Design

• Scaffold Hopping 

• Novelty

• Virtual Screening

• Library Design



Natural language generation and molecular structure generation
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• Can we borrow concepts from natural language processing and 

apply to SMILES description of molecular structures to generate 

molecules?

• Conditional probability distributions given context

• 𝑃 𝑔𝑟𝑒𝑒𝑛 𝑖𝑠, 𝑔𝑟𝑎𝑠𝑠, 𝑇ℎ𝑒

• 𝑃 𝑂 =, 𝐶, 𝐶

The grass is ?

C C = ?
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Simplified Molecular Input Line Entry Specification
(SMILES)

 

 

 

 

 

 

  
 

 
          

                                                  

• A sequence format for molecules

• Allows us to use the progresses made with natural language

processing in the recent years ☺



The generative process
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Reinforcement Learning: An In Silico mini-DMTA cycle

Design

Make

Test

Analyse

The Value:

Molecules for DMTA cycle

Produces novel scaffolds and 

improved compound

suggestions for drug discovery

projects

Less real world DMTA cycles

=> Saved timeOpen Source:

https://github.com/Marcus

Olivecrona/REINVENT

Generative RNN

Reinforcement

Learning Optimizes

the RNN

ML Predicted

Compound

properties



AI live: Create Structures Similar to Celecoxib
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• Key Message

• RNN generates 

structures similar 

to Celecoxib

• Rapid sampling!

• Average score 

describes how 

many learning 

steps are required 

to reach similar 

compounds



Artificial Intelligence Guided Drug Design Platform
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Generation of Novel

Chemical Space

Reaction & Synthesis

Prediction

iLAB

DMTA

Make

Test

Analys
e

Desig
n

Desirability 

function

Σ   50, LogP, 

Novelty etc.

Iterations

Profiling

AI Design 

Platform 

Fully Automated

DMTA Cycle



14

Lessons learned from project

• Novel scaffolds were identified in a crowded chemical space

• Compound series could be efficiently optimised  

• ADME and especially binding affinity predictions are limiting factors

• Too many ideas might make prioritization for synthesis challenging

• Chemistry resources might be frontloaded to assess the generated ideas

• Currently used in 12-15  LG/LO projects at all sites

• Continuously build of REINVENT platform 



This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant 
agreement N° 831472. This Joint Undertaking receives support from the European Union’s Horizon 2020 research 
and innovation programme and EFPIA
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What are the challenges for AI driven drug design? 

• Scaling AI and chemistry automation for drug design to a whole drug discovery 

project portfolio including projects with low data volume

• Binding affinity and solubility predictions are major bottlenecks

• “ ambria  r v   ti  ”  f   w A  m th ds mak s it diffi   t t  ass ss pr gr ss

• Educational, cultural & logistical challenges besides scientific

• The bar is set high to transform drug design
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Science @AZ
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Open Source:

https://github.com/MarcusOlivecrona/REINVENT



Recurrent Neural Network & Natural language generation
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Tokenization of SMILES

• T k  iz    mbi ati  s  f  hara t rs  ik  “  ”  r “ nH ”

• Represent the characters as one-hot vectors


