

cnrs

Software development and optimisation of bioinformatics pipelines to analyse high-throughput sequencing data in oncology

> Philippe Hupé Bioinformatics facility Curie Core Tech Institut Curie, INSERM U900, CNRS UMR144

1 Institut Curie

2 Software engineering for bioinformatics pipelines

3 Parallelisation of algorithms using MPI

1 Institut Curie

2 Software engineering for bioinformatics pipelines

3 Parallelisation of algorithms using MPI

3 hospitals

- 9.800 new patients / year
- 15.300 patients with treatment (76% women, among them 7.100 breast cancer)
- 500 patients with pediatric cancer

1 multidisciplinary research center

- 12 research units (with INSERM, CNRS and universities)
- 1 department of translational research
- 16 technical core facilities (Curie CORE TECH)

Bioinformatics core facility Unité 900 (~20 pers.) - created in 2002

 Transversal and institutional missions (management and biostatistical analysis of omics data, HPC, training)

イロト イポト イヨト イヨト ヨー シタマ

Asset to be part of a research unit

Support for precision medicine

Tailor the treatment based on genomic alterations in the tumor

- develop new methods
- implement pipelines for routine production
 - research
 - diagnostic
 - precision medicine for 10.000 patients / year
 - results must be delivered within 48h once the data are available

2 Software engineering for bioinformatics pipelines

3 Parallelisation of algorithms using MPI

Bioinformatics pipeline for high-throughput sequencing data

Bioinformatics pipeline to detect and annotate mutations and DNA copy number alterations that are used for the therapeutic decision

- many different steps that can be parallelized
- various languages (bash, python, R, java, C/C++, ...)

A process consists of three blocks

process align_sample {

input: file 'reference.fa' from genome_ch file 'sample.fq' from reads ch

output: file 'sample.bam' into bam_ch

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

¹adapted from Di Tommaso et al., 2017's slides

Input / output are connected by a channel

```
process align sample {
input:
                                        process index sample {
file 'reference.fa' from genome ch
file 'sample.fg' from reads ch
                                           input:
                                           file 'sample.bam' from bam ch
 output:
 file 'sample.bam' into bam ch
                                           output:
                                           file 'sample.bai' into bai ch
script:
 bwa mem reference.fa sample.fg \
                                           script:
       | samtools sort -o sample.bam
                                           samtools index sample.bam
                                            .....
```

- Processes wait for their input data
- When an input set is ready the process is executed
- They communicate by using dataflow variables (the channels)
- Parallelisation and tasks dependencies are implicitly defined by process in/out declarations

Easy to launch the pipeline on a computing cluster

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

¹adapted from Di Tommaso et al., 2017's slides

One software = one container that can be used by several processes

 Best practises to write the different process and nextflow code and organize the source code repository

< ロ > < 同 > < 回 > < 回 > < 回 > <

- In-house toolbox to automatize container generation and deployement of the pipeline
- The toolbox is as set of ACMake scripts

Ever-growing size and complexity of the data

Need to identify the bottlenecks (CPU, IO, memory, job duration) for each task of bioinformatics pipelines.

Code profiling of the pipeline with **nextflow**¹ (Workflow Management System)

Bioinformatics pipeline to detect gene fusions from RNA-seq for diagnostic (walltime \sim 24H)

CPU Usage

¹Di Tommaso et al., 2017

Ever-growing size and complexity of the data

Need to identify the bottlenecks (CPU, IO, memory, job duration) for each task of bioinformatics pipelines.

Code profiling of the pipeline with **nextflow**¹ (Workflow Management System)

Bioinformatics pipeline to detect gene fusions from RNA-seq for diagnostic (walltime \sim 24H)

Task execution real-time

Ever-growing size and complexity of the data

Need to identify the bottlenecks (CPU, IO, memory, job duration) for each task of bioinformatics pipelines.

Code profiling of the pipeline with **nextflow**¹ (Workflow Management System)

Bioinformatics pipeline to detect gene fusions from RNA-seq for diagnostic (walltime \sim 24H)

¹Di Tommaso et al., 2017

Ever-growing size and complexity of the data

Need to identify the bottlenecks (CPU, IO, memory, job duration) for each task of bioinformatics pipelines.

Code profiling of the pipeline with **nextflow**¹ (Workflow Management System)

Bioinformatics pipeline to detect gene fusions from RNA-seq for diagnostic (walltime \sim 24H)

Physical Memory Usage

¹Di Tommaso et al., 2017

1 Institut Curie

2 Software engineering for bioinformatics pipelines

3 Parallelisation of algorithms using MPI

High-Throughput Sequencing... some figures...

Sequencing with Illumina NovaSeq 6000

- 2 days of experiment
- 6000 billions of bases sequenced
- 10 billions of reads
- 2 millions times Les Misérables
- \sim 4,500 GB of data

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Alignment on the human reference genome

code: https://github.com/bioinfo-pf-curie/mpiBWA

Sort the SAM file by position along the genome

For deep sequencing, the size of the SAM file can be $\sim 1TB$ with $\sim 3\times 10^9$ lines.

code: https://github.com/bioinfo-pf-curie/mpiSORT

¹https://gatkforums.broadinstitute.org/gatk/

Bitonic sort of $n = 2^k$ elements¹

Bitonic sequence

Bitonic sorting network (does not depend on the input data)

25	Γ									25						25			25		18
36		Т	-							36	1.				36	Т		18	¥	25	
49			Т					49		.			26	¥	Т	26		26			
61													Г			18		Ŧ	36	¥	36
62											,	,			Г	62			49		44
74										44			t		Г	44	Т		44	Ŧ	49
77										26	+				49	+	Т	62		61	
93			Г							18	+					61		Ŧ	61	Ŧ	62
88		¥	Г						Γ	88	-					67			67		67
87		+							87						74	Т		68	Ŧ	68	
79								79						77	Ŧ	Т	77		74		
68										68						68		¥	74	Ŧ	77
67					67	,	,			Γ	88			79		79					
44							ł			74			ł			87	T		87	Ŧ	87
26								,		77	7 🔶				Г	79	+	Т	88		88
18		🖌 93 🔶 93 🔶 93														93					

sort the bitonic sequence

¹Batcher, 1968 ² http://pages.cs.wisc.edu

Bitonic sort of $n = 2^k$ elements¹

Bitonic sequence

Bitonic sorting network (does not depend on the input data)

The data are split into blocks attached to the different processors

イロト イポト イヨト イヨト

3

Start with a merge sort for each block performed by each processor

Use compare-split operator over the bitonic sorting network

Bruck algorithm¹ exchanges data between $p = 2^m$ processors from different nodes

- Bruck phase is like a joint between two tables (the elements of the table located on different processors)
- Each processor writes the data from a block of contiguous offsets O_d in the sorted destination file
- Avoid random access during writing for better IO performance

- C is the coordinate on the genome
- O_i the offset of the line from the input SAM file, O_d for the sorted destination SAM file
- R_i is the rank of the proc. that reads the block of the input SAM file
- R_d is the rank of the processor that will write the block of the sorted data in the destination SAM file

Bruck algorithm¹ principle

Performance on the sorting of SAM file with mpiSORT¹

Walltime on Skylake architecture: 128 cpus on 4 nodes on sample HG001²

- Efficient implementation (standard implementation process the data within ~ day)
- Ensure the scalability of the sorting as the size of the data increases
- Tweaking the code using MPI is not straigthforward and takes time

¹ https://github.com/bioinfo-pf-curie/mpiSORT, ²GIAB HG001 300X sample

mpiSORT is memory bounded

- The data have to fit into the memory
- More cores (and nodes) are required as the input data gets bigger and bigger
- Memory can be a bottleneck

Assess different data placement strategies using different technologies

 Intel Optane DC persistent memory up to 3 TB per CPU socket (in addition to the DRAM in the system)

イロト イポト イヨト イヨト ヨー シタマ

- Arango, C., Dernat, R., and Sanabria, J. "Performance Evaluation of Container-based Virtualization for High Performance Computing Environments". (2017). arXiv: http://arxiv.org/abs/1709.10140v1 [cs.05].
- Batcher, K. E. "Sorting networks and their applications". Proceedings of the April 30–May 2, 1968, spring joint computer conference. 1968, pp. 307–314.
 - Bruck, J. et al. "Efficient algorithms for all-to-all communications in multiport message-passing systems". Parallel and Distributed Systems, IEEE Transactions on (Volume:8, Issue: 11) (1997).

- Di Tommaso, P. et al. "Nextflow enables reproducible computational workflows.". *Nature biotechnology* 35 (4 2017), pp. 316–319.
- Hosseini, M., Pratas, D., and Pinho, A. "A survey on data compression methods for biological sequences". *Information* 7.4 (2016), p. 56.

Thank you!

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Marie Curie

Dans une bonne équipe chacun fait plus que son métier.