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Overview

How can we screen 10 billion compounds
on various protein targets in a
reasonable, painless, and not expensive
way?

Drug Discovery Pipeline
Giga-Docking

ML for drug discovery

Combining ML and Giga-Docking

D=

Figure 1| Virtual screening today? M. C, Escher's artwark “Ascending and Descending”®
from 1260 may he used to illustrate the current situation of virtual screening. With few exceptions
(the potentisly frustratad figures msting oo the steps and on the balcany) the ussr and devsloparns
woek an i high but similor level with sophisticated software, Although continuous step-by-step
Progress i macs or percerad a5 suchl, ooly & change of peespecthn will snabde a bruskthrough and
allow computaticnal chemestry to resch greates potential. Figure reproduced, with parmasion, fram
The M, C. Escher Compary & (19604,



Overview of early stage drug discovery




DRUG DISCOVERY

~108 products

PRE CLINICAL

11,000 products

CLINICAL TRIALS

6,300 products

FDA APPROVAL

111 products

O

O

* &

_Drug Discovery
Funnel




Target based compound
screening

—_

1060 estimated drug-like compounds

COMPOUND
DISCOVERY

Mining massive building block or de-novo
generated libraries

INTERESTING?

Does this compound inhibit or interact with
the target? O

TOXICOLOGY

Is this compound reasonably safe?

SYNTHESIS

Can we buy it, is it from available building
blocks, or do we need to hire a medicinal O
chemist?

Lead Drug
Discovery Funnel



Drug Discovery Pipeline

Paul Ehrlich (1854-1915)

* Magic Bullet: Ehrlich formed an
idea that it could be possible to kill
specific microbes which cause
diseases in the body, without
harming the body itself

Estimated 2M proteins in the human
body
Estimated 1069 compounds

Chemical Space

Natural ) A
doconid - / Combinatorial
Products -~ 4

4 Screening
Decks

&

Drug Leads @
S Chiromics Collections

Searching for new drugs is like fishing in the
dark: the prospect of catching something is
very uncertain, and it requires patience,
skill and - of course - money.

Video series from Roche youtu.be/bIFnOVKd2Ko 9



Proteins 101

* Primary structure
— sequence of amino acids in a
polypeptide chain

= Secondary structure
— refers to local folded structures that
form within a polypeptide due to
interactions between atoms of the
backbone.

» Tertiary structure
— The tertiary structure is primarily due
to interactions between the R groups
of the amino acids that make up the
protein.

= Quaternary structure
— Multiple protein subunits come
together to form a larger complex
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Computational Chemistry

SMILES Simplified Molecular Input Line Entry System v = ﬁ-\_(v
» De-facto standard for communicating molecular structures o ,-
— It's somewhat difficult as different orders of the string exist ¢
— StreoOchemistry is hard / -,
= DFS on graph b
— The chemical graph is first trimmed to remove hydrogen atoms and cycles are AT oo e oo oM T 00

broken to turn it into a spanning tree.
— Where cycles have been broken, numeric suffix labels are included to indicate
the connected nodes. Parentheses are used to indicate points of branching on

the tree.
| Input SMILES | Unique SMILES
| ] | l locc lcco
SMILES Name SMILES Name
|CC Iethane [[OH3+] [hydronium ion |[CH3][CH2][OH] ICCO
|O=C=O Icarbon dioxide [[2H]O[2H] [deuterium oxide |C'C’0 ICCO
[C#N }hydrogen cyanide }[235U] }uranium-235 |C(O)C ICCO
CCN(CC)CC [triethylamine F/C=C/F E-difluoroethene — -
CC(=0)0 [acetic acid [F/C=C\F [z-difluoroethene |OC(-0)C(Br)(CI)N INC(CI)(BF)C(—O)O
[cicccect [eyclohexane  [N[C@@HI(C)C(=0)0 [L-alanine [CIC(Br)(N)C(=0)0 [NC(CI)(Br)C(=0)0
lclccceel  |benzene IN[C@H](C)C(=0)0 [D-alanine |O=C(O)C(N)(Br)Cl INC(CI)(Br)C(=O)O

11


https://en.wikipedia.org/wiki/Spanning_tree_(mathematics)
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“This evaluation has shown that docking

programs are usually successful...the difficulty
was not in positioning the ligand within the
binding site but in reproduction of the small-

molecule conformation.”
A Critical Assessment of Docking Programs and Scoring Functions

Gregory L. Warren,®' C. Webster Andrews,! Anna-Maria Capelli.” Brian Clarke,” Judith LaLonde,'* Millard H. Lambert,!
Mika Lindvall **® Neysa Nevins,” Sirmon F, Semus,” Stefan Senger,* Giovanna Tedesco,” lan D. Wall) James M. Woolven,*
Catherine E. Peishoff,” and Martha S. Head”

GlaxoSmithKline Pharmaceuncals, 1250 Sowth Collegeville Road, Callegeville, Pennsylvania 19420, GlaxoSmithKline, Five Moore Drive,
Research Triongle Park, North Carolinag 27708, GlaxoSmithKiine, Centre Via Alessandro, Fleming 4, 37135, Verona, Italy, GlaxoSmithKline,
New Fromtiers Scionce Park, Third Avenue, Harlow, Essex CM19 SAW, UK., and GlaxoSmithKline, Gunnels Wood Road,

Stevenage, Hertfordshire SG1 2NY, UK.

Received April 17, 2005



Structural Docking ;
Exhaustive shape fitting o p, T

Xerays 3 e i. i
= docking is a method which predicts the preferred orientation of one ufn'i‘i‘,";"wp mger
molecule to a second when bound to each other to form a stable complex. E??Zs..‘;!';"”
= |t is a simple problem to understand, figure out how to fit the ligand onto the Diagram of X-ray crystallography
protein

= The search space in theory consists of all possible orientations
and conformations of the protein paired with the ligand.

Target Ligand Complex

Inputs: molecular dataset (2D SMILES strings), : i ‘ docking E
target protein structure,

search parameters,
scoring function f

‘-" —_—
For ligand pose from strategy

Result = max(Result, f(Protein pose, Ligand pose))

docking

13



Automatic pocket detection

Le Guilloux, V., Schmidtke, P. & Tuffery, P. Fpocket: An open source
platform for ligand pocket detection. BMC Bioinformatics 10, 168

Targets and binding sites B P/ 0L OO 61471 2105-10-168

Score : 0.915

Druggability Score :  0.920

Number of Alpha Spheres : 80
Pocket 2 NSP1 Total SASA :  16.657

Polar SASA: 2.165
Apolar SASA : 14.492
Volume : 599.003
Mean local hydrophobic density : 18.690
Mean alpha sphere radius : ~ 3.963
Mean alp. sph. solvent access : 0.523
Apolar alpha sphere proportion : 0.363
Hydrophobicity score: 33.000
Volume score:  3.143
Polarity score: 4
Charge score: 0
Proportion of polar atoms: ~ 39.583
Alpha sphere density : 5.345
Cent. of mass - Alpha Sphere max dist: 14.313
Flexibility : 0.118

Pocket 2 :
Score : 0.689
Druggability Score :  0.834
Number of Alpha Spheres : 67
Total SASA :  8.089
Polar SASA:  3.259
Apolar SASA : 4.831
Volume : 367.098
Mean local hydrophobic density : 20.545
Mean alpha sphere radius : ~ 3.909
Mean alp. sph. solvent access : 0.483
Apolar alpha sphere proportion : 0.328
Hydrophobicity score: 27.125
Volume score: 2.875
Polarity score: 3
Charge score : 1
| . J Proportion of polar atoms: ~ 40.541
’% © 4 s Alpha sphere density : 3.665
\ = Cent. of mass - Alpha Sphere max dist: 10.679
. . x Flexibility : 0.124

T
=™ Nw?d NG 4 .
% Pocket1.' -6 -

\ -







Protein-Ligand Interactions

How can we measure the attraction?
» The most realistic is quantum mechanical

» The Born-Oppenheimer (BO) approximation
= force field constructed from simple analytical and differentiable functions.

1 n
Ulrsevi®n)= 3 -2-1(}*"’ D (85 — Boq,i)?

all bonds
9"0 i E K(angle)(o — 6. ” ‘)
all nnglea

o Z ZK§dibedru) cos(m,q&,

all dihedrals

v C \, N 5 (@

all nonbonded pairs

. €Tyj .‘)\ -
'3 e e e

Tij Tij
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It’s easy to fall pray to Ehrlich’s idea of the magic bullet

17



MD Simulation
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MD Simulation




H. Ma, D. Bhowmik, H. Lee, M. Trill, S. Jha, A. Ramanathan, Scalable Execution of
Protein Folding with Deep Learning Driven Adaptive Molecular Simulations, ParCo
2019

Deep Drive MD

20



FE workflow

How can we get simulation level
accuracy of binding free energy on
a dataset with over 10B ligands?

Current sample workflow

System Components

Goal Workflow

1,000,000 poses docked

|

25,000 systems build and
minimized

l

625 systems simulated

ML Screening

~0.001 seconds per task per
GPU

Structural Docking

~8 seconds per ligand per CPU core

System building
and minimization

~30 seconds per ligand per GPU

MMGBSA (simulation)

~15 minutes per ligand per GPU

10,000,000,000 compounds
screened with Al models

|

250,000,000 poses docked

|

6,250,000 systems build
and minimized

i

156,250 systems simulated

(that’s about 12H on 1024 summit nodes)

21



High Throughput Docking (HT Docking)




On Demand Library Sizes

Discovery Diversity Set 10 560 compounds  High-quasty diverse library of fatest compaunds
Discovery Diversity Set 50 240 compounds "°P4“°"g diverse library of recantly synthesized
ompounds
Hit Locator Library 300115 A sizable highly diverse scroening set
compounds

Phenotypic Screening Library 6 370 compounds Speaal dversity set created for Phenatypic Screens

Covalent Screening Library 32 411 compounds = Larest and mest refiable source of Covalent Modifiers

LETTER

hips//doiery/10,1038/541586-019-1540.5

Anthropogenic biases in chemical reaction data
hinder exploratory inorganic synthesis

Xiwen Jia!, Allyson Lynch!, Yuheng Huang', Matthew Danjelson', Immaculate Lang*at', Alexander Milder', Auron E. Ruby/,
Hao Wang', Sorelle A. Friedler®, Alexander | Norquist™ & Joshua Schrier! ™

“Machine-learning models that we train on a smaller randomized
reaction dataset outperform models trained on larger human-
selected reaction datasets, demonstrating the importance of

identifying and addressing anthropogenic biases in scientific data.”

» Real Explorer* — Estimated 13B cpds
» Real — Library 1.2B cpds

» Diverse REAL drug-like, 15M cpds

» REAL lead-like, 868M cpds

» REAL 350/3 lead-like, 378M cpds

EEEEE

= Use about 115k building blocks

*synthesis time is 3-4 weeks
with an average success rate
of over 80% 23



Articin | Publinhed 08 Fetimaary 2019

Ultra-large library docking for 1. Dock 99 million molecules
discovering new chemotypes i Average of 4,054 orientations
- Jankun Lyu, Sheng 'Wang, Tront E Ballus, lera Singhy, Anat Lewit, Yurk & tdoroz " Average Of 280 Conf()rmers
H T D oc kl n g Mutthaw 3. O'Maiey, Teo Cha, Enkijargin Ak, Kataryna Tolimachow, Aodioy A 2 Cluster top-ranked 1 m||||0n

Tokmachey, Sran K Showchet =, Sryan L. fotn =& Jobn J irsn =

Nt 566, 324-220620191 | Cina ths atick i. Remove similarity compounds to known inhibitors
| TR ii. Reducing redundancy
» Lyu et al. found that it was essential to screen the 3 Fifty-one top-ranking molecules
full library to discover the most biologically active ] 44 (86%) were successfully synthesized
compounds ii. 5 compounds measurably inhibited, 11% hit rate

B

= Human inspection was somewhat similar Lead Optimization
i. To optimize the five initial hits, we chose 90 well-
scoring analogues from within the make-on-
demand library
ii. Over half were active on testing, improving the

affinity of each of the 5 hits by 3- to 29-fold

= the molecules prioritized by human inspection
typically had better affinities: 44% of these were
submicromolar, which was true of only 27% of those
prioritized by docking score alone.

Eaco ‘— Wi e
— 1000 1M
"mw-‘— ’ ‘m
T T
o 50% 100%
c -0.€
-0.4
e - - o
100M - 148 =
— - 20U -0.2
) — 1M - 50
Human- . 2 L] 7 — Nt Detrmined 0
: -
H 10 1 ) 2 - -
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Crystal structures of the inhibitors (carbons in cyan) overlaid with their docking predictions (magenta). AmpC carbon
atoms are shown in grey, oxygens in red, nitrogens in blue, sulfurs in yellow, chlorides in green and fluorides in light blue.
Hydrogen bonds are shown as black dashed lines. a-d, AmpCin complex with ZINC547933290 (a; Protein Data Bank (PDB)
6DPZ, r.m.s.d.=1.3 A) and 275579920 (b; PDB 6DPY, r.m.s.d. = 1.2 A for the warhead), the 1.3 UM inhibitor 339204163 (PDB
6DPX; r.m.s.d.=0.98 A) and its 77 nM analogue 549719643 (d; PDB 6DPT, r.m.s.d. =1.52 A). e, Close-up of the 549719643
phenolate in the oxyanion hole. Extended Data Fig. 4 shows the electron densities.
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RADICAL-Cybertools & COVID-19

“The throughput
averaged 1s per library
compound” — Lyu paper

“1,513,728,000” CPU
seconds to compute on
enamine real database
(1.4B)

We’'re running around
0.5s per library
compound, working on
bringing that up

http://radical.rutgers.edu/

Scientific Performance Computational Platforms Used
Performance
Workflow-0 e 300K/h ligands on Linear weak scaling up to e Frontera (TACC)
Frontera (TACC) on 4 512 nodes (TBC) e Comet (SDSC)
HT Docking nodes : g‘:rfp(e/g:;)
e 50K/h on Theta (ANL) on (TACC)
128 nodes
Workflow-1 e Andre to provide ® Typical at 128 GPUs e Summit (OLCF)
Automated ® Planned at 1024 GPUs e Longhorn
System (TACC) TBC
building and
MMGBSA
Workflow-2 e 0O(10)-O(100) faster e Typical 144 GPUs (128 e Summit (OLCF)
(DeepDrive sampling compared to MD + 16 CVAE) e Longhorn
MD) Anton trajectory for BBA, | e Up to 6 concurrent (TACC) TBC

VHP proteins
e For COVID19 assembly
proteins TBC

workflows




Aurora: HPC and Al

> ExaFlops/s for HPC
>> Exaops/s for Al

Argonne &

NATIONAL LABORATORY

Architecture supports three types of computing
= Large-scale Simulation (PDEs, traditional HPC)
= Data Intensive Applications (scalable science pipelines)

= Deep Learning and Emerging Science Al (training and inferencing)




Accelerating with ML




Quick bit on drug discovery philosophy

| see two camps out here

Brute-force Scaffold hoping

= Need some sort of oracle to filter space = Once a good hit is found, sample
densely around it

thuster
3e+00

RF Pradicted tSNE Cocrdinats 1
= 5]

B v 25
RF Predicied tSNE Ceoronate &




Recall, when you're docking you are

) ] exhaustively finding a pose, wasting
Accelerating with ML CPU cycles and 10

smiles ADRP-ADPR_pocketi_dock

2531 Brc1cceec1cinng(o1)Cn1nc(c(c1C)[N+}(=0)[O-])C -3.503724
196791 N#Cc1cecce10Ce escni)cinccent -3.776353 40000 1
143928 Ce1ee(C(=0)Clele(c1)C(=0)C)OCc1 cecfect)Cl -3.148670 35000 1 dock Ignore this side
9558  CC(=OJNc1cccice)SCet[nH]o(=0)c2e(nt el cocce 102 -3.383467 30000 - this side
290589 O=c1[nHjc(=0)c2¢(n1)n(C{C@@HY(C@@H)([C@@H](CO... 0000000 ]
194200 N#Cc1cec(ce)OCe 1 noc(n1)C -5.183101 200001
101391 COCCNe1nnels1)SCC=0)eTecinic1CIC1CC1)C 262071 150007
104532 CO[C@@H]1CN(C[C@H]1e1nnn{c1)C)C(=0jc1cc(O)ncle... -2.766863 10000 -
78848 CN(CC(=0)Nc1co{Flec(c1)AICCC(=0)0.Cl -3.856561 5000 -
262213 O=C(Ncicenn1Celeee(cel)CHCCelc(Cnoc1C -2.428766 0 . N
-14 -12 -10 -8 -6 -4 -2 0

310404 rows x 2 columns




Build an ML model that:

« Takes aligand in and

featurize it

Outputs some number

« Take that number as this is
a good compound go
ahead and dock or bad
compounds don’t waste
your time
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Feinberg, Evan N., et al. "Potentialnet for
molecular property prediction." ACS central
science 4.11 (2018): 1520-1530.
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Gupta, Anvita, et al. "Generative recurrent networks for de novo drug
design." Molecular informatics 37.1-2 (2018): 1700111.
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Example simple model

Use a random forest model on cheminformatic descriptors

In [279]: df = df[['smiles', 'ADRP-ADPR_pocket1l_dock']].sample(frac=0.01)
In [*]: from mordred import descriptors, Calculator
from rdkit import Chem
mols = [Chem.MolFromSmiles(df.iloc[s,@]) for s in range(df.shape[@])]
calc = Calculator(descriptors, ignore_3D=True)
df_des = calc.pandas(mols)
63% | | 1945/3104 [01:26<@3:15, 5.93it/s]
ABC  ABCGG nAcid nBase nAromAtom nAromBond nAlom nHeavyAtom nSpiro nBridgehead .. SRWOS SAW10 TSRW10
0 17499447 14858900 0.0 00 10 1.0 320 220 0.0 00 .. 6861711 10242065 70.806108
1 18522676 14.458540 0.0 0.0 "o 1.0 Aara 240 0.0 00 . 6580639 S804385 7Y1.518122
2 25650763 18820855 0.0 0.0 240 26,0 52.0 320 00 00 .. 7423568 10447932 B84.148513
3 18226790 15646696 0.0 0.0 10.0 1.0 50,0 250 00 00 .. 6250581 10115570 72.797457
4 17331580 14703517 0.0 0.0 1o 11.0 440 220 0.0 00 .. 6605208 102096832 70.298555
In [3@8]: from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import cross_val_score

rf = RandomForestRegressor()
scores = cross_val_score(rf,X,y,cv=5)
print('r2_score: ' + str(np.mean(scores)) + " +/ " + str(np.std(scores)))

r2_score: 0.6246748341262527 +/ ©.01401545464858188

Generate Descriptors

Build a Model

32



40000 1
35000 -
30000 A1
Analyzing the models e ™
3 20000 1
:‘, 1 15000
- 10000 -
= Metrics become a difficult task. 000
o
= Suppose just want the top 5%, we can bin the predictions = _......” '2
that come out of the model
[[1424 501 [ 50 2811
1424 50
50 28
. Receiver Operating Characteristic . Receiver Operating Characteristic 10 Receiver Operating Characteristic
8 1 08 i ///
6 % 06 0.6 1
4 £ 04 04
&
.2 1 02 0.2 1
T — AUC =086 — AUC =089
0 - ; ; ; . 0.0 ' r ; , | 00 ; : ; ;
0.0 0.2 04 06 08 10 0.0 0.2 04 06 08 10 00 02 04 0.6 038 L

False Positive Rate False Positive Rate False Positive Rate 33




= We need two things to decide on a cut-off. We need to know how many downstream tasks we can afford to
dock, how many of the top leads we want to find, and what our tolerance is for missing some.

» Let’'s compute it:

» For leads_desired in top [1%, 10%, 50%]
For number_able to dock in predicted top [1%, 10%, 50%]
score[leads_desired][number_able to dock] =
how many of my top predictions | was able to dock found the desired leads?

Now let’s just look and see where in that grid we were able to capture the most part of the leads

34



Regression Enrichment Surface (ADRP-ADPR dock score)

10°
Clearly not the best m

*
x
(=8
2 107
v
=
=
-0.3
-0.2
102 0.1

1072 1071 10°
Screen top x%
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REAL database, 1.2Bn cpds

| estimate only 1M of these will be a
solid interesting poses

—_—
—_

-

Ingest 2048 compounds per second per GPU

|

Models need to

‘ g perfectly capture the
. Il I 5 2 GPUs top 1.36% scoring

M compounds

Pass through %Iigands per second per core

Dock 56 Cores
software

36



Ensemble Docking Strategy

aivlieh Mpro- Mpro- Mpro- Mpro- Mpro- pro- Mpro-

x0072_dock x0104 dock x0107 dock x0161 _dock x0195 dock x0305 dock x0354 dock

190206 N#Cc1[nH|cc(c1)C(=0)NC1CCCN(C1=0)Cclcceicct F)F -7.610964 -9.077101 -6.082486 -7.187638 -3.866065 -8.221134 -8.407152
183577 Fclcce(ec1)nine{c2c1CCCC2)C(=0O)Nc1cccec2eincec2 -7.651024 -8.650168 -6.455404 -8.196528 -2.535620 -7.974315 -9.616221
20569 CC{OCC10CCN(C1)C{=0)Ne1ce(Cinnc1N(CIC)C -6.672259 -8.808953  -4.886088 -7.568527 -8.250710 -7.454492 -7.919614
51863 CCN1CCN(CC1c1ncen1C)C(=0O)ctccociC -7.782367 -7.818557 -7.168431 -8.478214 -6.264867 -8.653809 -7.940884
61669 CCOc1cee(ce1)S(=0)=0)Nciccecc1C(=0)NCeiceecet -6.892548 -7.140425 -7.680151 -8.484144 -5.973836 -8.021129 -6.782618
47393 CCNIC1CCS(=0)(=0)C1)Cc1cec(cc)Cl -7.675440 -8.849446 ~7.132509 -8.277190 -7.847459 -8.122643 -7.028652
3998 C=CCN{C(=0)Ce1esc(nl)ciccenc1)Celcee(ce1)OC -7.226417 -8.490604  -5.619135 -7.982813  -6.734933 -7.797452 -7.357950
307188 Oc1cecinn1)C1CCCN1Ceinne(n1C1CC1)C -8.533868 -8.651809 -7.508603 -8.130071 -8.237130 -9.066695  -8.418077
107597 COc1ce(CCC(=0)Nc2nnc(s2)C(C)Ciccc10C -6.423342 -7.337890  -5.327817 -7.672044 -7.347135 -7.294445 -6.882808
258487 0=C(Nc1ccee(ct)e1cee(=0)[nHjn1)NCCelcee(ce1)C -6.501783 -8.285757 -5.552805 -7.929476 -5.661306 -8.398631 -6.669324
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Example results from an ensemble docking run on Mpro from COVID-19
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Filtering space with ML Models
130X speed up over non-ML approach

(606%0,) (60690,)

s Regression Enrichment Surface ADRP_pocketl image model

» ResNet-like model trained using 2D image
depictions of molecules.

» Model shows we can retrieve the top 0.1%
of dock scorers while only screening the top
0.5% of the database.

» Rather than docking 1 billion compounds to
get the answer, we only need to dock 5M
compounds.

107!

top x%

» At the end, we have the same computed o

structures as the non-ML group, we just
used 200x less CPU compute.

= 8,192 ligands per node/s can be inferenced
on a GPU while only 56 ligands can be
docked on the corresponding CPU node/s

True

- 0.4

1073
- 0.2

10—: TEY 00
. 103 1072 107! 10°
Screen top x%
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Images as model features

= Taking from the success of image convolutional models from computer vision tasks:
— Can we use the image directly instead of computing descriptors or fingerprints to input the drug into our
model?

= |n practice, imagine taking every smile string and generating the 2D depiction. We use that instead of the
string, or the descriptors.

O
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;v )
.

;Ia

O
-

i\ ¥
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g [Qe= 000
e

mXm

Raw Input Convolutional layer Poaling layer FC-layers Classifier




Example

» Suppose we wanted a model to count hydrogen bond acceptors. We would use this image (left) as
input to our model. The model recognizes and counts the h-acceptors.

ATTN, Predicition value 5.059506416320801actual 5.0




Predicition value 0.9508237838745117 ? Predicition value 0.9441864490509033

" What'’s going on with images?

‘s Added simple attention in a middle

___ _ _ __ JiN IEE—— .. ResNet layer through a large conv filter
e oSS e 1  presiction value 0. 573051446814673 . but through softmax (globally)

- Not based on cells, due to tower
" structure

s Prediction value is area under the dose
1. response curve




Cerebras Wafer Scale Engine

Largest Chip Ever Built

46,225 mm? silicon

1.2 trillion transistors

400,000 Al optimized cores

18 Gigabytes of On-chip Memory
9 PByte/s memory bandwidth
100 Pbit/s fabric bandwidth
TSMC 16nm process

Cerebras WSE Largest GPU
1.2 Trillion Transistors 21.1 Billion Transistors

46,225 mm? Silicon 815 mm? Silicon




P2 spead-up-overnch-Maoproach

Filtering space with ML Models 990X speed up with successful hardware
accelerators

» ResNet-like model trained using 2D imag

s (60650,) (60650,)
depictions of molecules.

s Regression Enrichment Surface ADRP_pocketl image model
» Model shows we can retrieve the top 0.1°
of dock scorers while only screening the

0.5% of the database.

» Rather than docking 1 billion compounds
get the answer, we only need to dock 5M
compounds.

107!

top x%

» At the end, we have the same computed o

structures as the non-ML group, we just
used 200x less CPU compute.

= 102,400 ligands per node/s can be
inferenced on a CS-1 while only 56 ligan«
can be docked on the corresponding CP!

107* —- 0.0
nOde/S 10-4 10—3 10-: 10-1 10'3
Screen top x%

True

- 04

10732
-0.2
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What if we replace the need to simulate every molecule?
Replicating Lyu et al. Giga-Docking with 200x less CPU compute

Trained message-passing network with 500K ampC

{ampC) Regression Detectior Surface

© Screen 1% of molecules, you'll
Have 50% of the true top 1%

10 *

}Screen 1% of molecules, you'll
Have 70% of the true top 0.05%

0.4

w

Screen 10% of molecules,
w o get all of the top 0.1%

Screen top x%

*preliminary work, first approximation of a good model
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Acceleration for filtering models

= Given a function you want to filter F, how can we determine what kind of acceleration you can get?

= Two components
— Model enrichment: how many samples can you save running on F?
— Model speed: how long does the model take to run compared to F?

N * FSpeed
N * ModelSpeed + EF * N * FSpeed
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Different approaches to ML and Docking




Look at ML through some lenses

Surrogate Modeling

Library generation

v

ML-driven optimization

How to utilize Al for replacing our
applications for speed?

How can Al expand the space of
possibilities?

How can Al do these tasks
simultaneously?
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xpand knowledge: e.g., machine reading

utoencoders to navigate chemical and
unctional spaces

ctive learning to choose next experiment
r simulation

einforcement learning to guide
xperiments and/or simulations

Inverse

Functional space

Desired properties (ved
potential, solubility, texicity)

Optimization,

Ex eru'\enl or
0 evolutionary slrategies,

High-thraughput virtual

simutation (Schrodinger screening (g, with 3 i
| \ i erative models (VAE,
eguation) filtering stages) ge ’szrilx RL) [
Chemical space g I ‘
7RG 4 | v
e ﬂx '?” d’ ,fs

(Drug-like, photovoltaics
polymers, dyes)

anchez- Lengellng et al., Science 361, 360 365 (2018)

e i D s
Machine learning
models ) \

saINqLIY

A A

e

High-throughput

| can enable a new era of discovery based on automated search

experiment / J

simulation

New knowledge

Observational
data

Ren et al. Sci Adv. (2017) eaaq1566
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Machine Learning In Drug Discovery

‘Target identification
and validation

Compound screening
and lead discovery

Successful applications in drug discovery

« Target identification and ~» Compound design with
prioritization based on desirable pro

gene—disease associations .

= Target druggability predictions

« Identification of alternative
targets (splice variants)

Required data characteristics

» Current data are highly

* Large amounts of

heterogeneous: need

standardized high-dimensional

target-disease-drug
association data sets

training data needed

* Models for compound
reaction space and
rules

» Comprehensive omics data » Gold standard ADME
from disease and normal states data

* High-confidence associations * Numerous protein
from the literature structures

* Metadata from successful and
failed clinical trials

Preclinical
development

* Tissue-specific biomarker
identification

« Classification of cancer
drug-response signatures

» Prediction of biomarkers
of clinical end points

» Biomarkers:
reproducibility of models
based on gene
expression data

* Dimension reduction of
single-cell data for cell
type and biomarker
identification

* Proteomic and
transcriptomic data of
high quality and quantity

Clinical
development

* Determination of drug
response by cellular
phenotyping in oncology

* Precise measurements of the
tumour microenvironment
in immuno-oncology

* Pathology: well-curated
expert annotations for
broad-use cases (cancer
versus normal cells)

* Gold standard data sets to
improve interpretability and
transparency of models

» Sample size: high number of
images per clinical trial



Integrating ML.:

Pipelines that are ML designed.




RNN SMILES Modeling

=]

i . y g
() /KIS sempins | sk 08
% COCLCCCCCIEAAAAA O=CCOYClaiI0 > i ﬁ
o “"“”"““"."‘TL,,, - PestaNcle o § 0.6
o o=Clcrcecl c
EE[’J\ g:gm eNLe(C)eeee(CICL O v 04
A7 0C1CCCCCT EARAARAA > 4
M onlean(ceo)cyccae  Output _U :
Gupta, Anvita, et al. "Generative recurrent networks for de novo drug 0.2
design." Molecular informatics 37.1-2 (2018): 1700111. 7
0.0+
Samples from RNN on single GPU (<6 minutes)
2000000 - 1.0
3
=08
3 1500000 - B2
§ — Toul =06
= o— \tal.ld =
= 10000004 — Unique 3 04
E = Unique Scaffolds 5
i)
#* Fo02
500000 1 L
0.0
025 050 075 100 125 150 L75 200
Temperature of Softmax

lggmpling RNN Generator on 4 V100 GPU (first approx.. T=1.1)

1 = Unique to T Data

1 = Toul Sampled

=~ Valid Sampled

20000 300 40000
Seconds Passed

(Predicted) Unigue Molecules as « % of Sample Rate

0 10000

Temperature
— 1Y
— 125
—= {10
— 1)

0 5 10 15 2 25 30
Days Sampling Run
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RNNs create a new paradigm for streaming development

= Rather than randomly drawing compounds from a library....

= What if we imagine a stream of compounds, all with some good properties, and then we want to work on
those?
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Super fast, modern
generative algorithms

IBM AC922, 6 GPU node. Balanced
Heavily towards GPU, not CPU

Single threaded algorithms for CPU ]
post-processing 5000 Seconds per smiles

1
5003—/']351[50;/]5.: 00s/sEBOS—/]sE
L JHC AL JAL JF
| | | |




In order to keep GPUs and CPUs hot, unique stream of molecules needs to stay constant

0.4 0.6 08

* Database,

TN s

L Top Experiments
0.001%
oy Estimated Unique Molecules 27,600 V100 GPUs
e
— total
0.8 4 — Unique

c
>

Unique Sampled
=
e

=)
(S5}

=)
P

0 5 10 15 20 25 30
Days Sampling Run

€ per second

% Uniqu



Layered workflow

i > ML Property Prediction Pipeline » UQ Scoring
Filter and
Candidates Optimization

ML

A

A

ML Generator of Candidates

A

Simulation: Estimation of Properties

A

Active
Learning
Prioritization

Update ML
Models

A

Experiment: Estimation of Properties [*

Pure ML “constant time” (fast loop) Mixed/Variable time (slow loop)




HIGH THROUGHPUT

Drug discovery SCREENING
Generating
. . / Drug Leads \ . .
e &)
(] frTTm
Database
» Generative Neural of Leads « Simulation surrogate
Networks models
« Language modeling * Uncertainty calibrated

» Graphical models * Ranking Neural networks




But there is a sense we are just creeping
Ahead with baby steps in improvement

situation af virtual screening. With fe
staps and an the balcan:

allow computaticnal ¢ ¢ to reach greater potential. Figure reproduced, with parmmeasion, fram
The M, C. Escher Company & 119604,

Argonne &

NATIONAL LABORATORY
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RL-Dock

. . . . . Dynamic descriptions of
Reinforcement Learning Docking and Simulation molecules will have to replace
our predominantly static view

= As a newcomer, the process seems lengthy... precominanty 3t HE Ve

_ Come up leads of both targets and ligands.

— Find targets and crystal structures Gisbert Schneider

Department of Chemistry and Applied Biosciences,
- LOOk at COnfOrmerS /ns;itutlelof Pharmtfrceu;icall Scie?ce;,)Swiss
. . Federal Institute of Technolo ETI
— Hours of compute simulating compound v

— Have to start over for new optimization or when toxicity testing comes

Designing a drug inside a flexible pocket in seconds?

RESEARCH ARTICLE COMPUTATIONAL BIOLOGY

Deep reinforcement learning for de novo drug design

Mariya Popova' 2, Olexandr Isayev'* and Alexander Tropsha':’
+ See all authors and affillations
Science Advances 25 Jul 20718

Vol 4. no 7, eaap 7885
DO 10.1125/scindy. aap7B85
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Generative Models

Frojection of junction Tree autoencoder space

Connecting HPC and Al

In addition to partnerships in Al applications, there are considerable

opportunities in foundational methods development, software and software
infrastructure for Al workflows and advanced hardware architectures for Al
below we highlight some ideas in the HPC + Al space -

= Steering of simulations
» Embedding simulation into ML methods

Learned Function Accelerators

. . Physics Code | Al Engine DOE lnﬁastmc:om
= Customized computational kernels s e R | gy g n
X.f)=a Model Library

» Tuning applications parameters  AA———— ' s Evgne :
.;,7.11....:.:::”.;:7-_-. nt' i (X.f)=y A Accelerators
= Generative models to compare with simulation - [ s saane

DOata Storage

= Student (Al) Teacher (Sim) models =learned functions
= Guided search through parameter spaces

= Hybrid architectures HPC + Neuromorphic

» Many, many more

Al Accelerators




COVID Update

Main workflow - Epitope analysis workflow

Evolution group provides inputs . . .

Small molecule vs. mutating regions across

| corona\{iruses |

DeepDriveMD

Runs on
OLCF
Summit




Webinar

2 ;
‘%\KCUmpBiUmed series

A Centre of Excellence in Computational Biomedicine

Q&A

To pose a question, you can write your question
in the “Questions” tab

This project has received funding from the European Union’s Horizon 2020 The webinar series is . /ﬁx‘_;
research and innovation programme under grant agreement No 675451 run in collaboration with: VPH Institute

Bubdng the Viral Phydclogical Haman




2 = Webinar
A LompBioiTled EE

A Centre o f Excellence in Computational Biomedicine

Thank you for participating!

...don’t forget to fill in our feedback
questionnaire...

Visit the CompBioMed website (www.compbiomed.eu/training)
for a full recording of this and other webinars,
to download the slides
and to keep updated on our upcoming trainings

This project has received funding from the European Union’s Horizon 2020 The webinar series is _ /’?
research and innovation programme under grant agreement No 675451 run in collaboration with: VPH Institute /m
" Bubding the Virmal Phyiclogical Human



http://www.compbiomed.eu/)

QUESTIONS?
aclyde@anl.gov

www.anl.gov
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Molecular modalities
What is a “molecule” in the sense we’re after?

= 2D Graphs P = CFG models

] : SMILES
3D Coordinates Database » Docked models

= 2D Images : :
= 3D Images (voxels) = Chemical descriptors

= SMILES » Fingerprints

— Canonical Soft
— Kekule ?R(\;Vkéll{ = = 3D waveform

= SELFIES (L2 Chomsky) = 3D density
» Surface = MACCS

= Conformer Sets how do we chose? .
= _..many more in literature
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Deep Learning Enabled Precision Medicine for Cancer
Rick Stevens (ANL PI), with NCI, LANL, LLNL, ORNL

= Opportunity Predicted Parcentage Growth
— Increasing biological data require supercomputer-powered — Layer G4
deep learning models in challenging cancer problems Mo | | e et |ovig e
| Layer FC2 IeGHcas {8 MOA)
(e.g. cancer ] ¥
= Argonne assets o .
— Scalable machine learning — oy i ancaded festures
. . . . . . E-:;m?sm onc.eome ma?RNA Drug t Dmg 2 Dosel  Dose2
— Expertise in computational biology and cheminformatics , . ] A
Motocuer | | A7 E3 Layer P2 Layer M3 Lﬂ;yao;ﬁ Siiared Unified
= Strategy ot || Coarts | [ iyt | Loyt || | [Tarer ] | oyl
—Develop an exascale deep learning framework (CANDLE) €1 [ Lyt | [ Layeet || ([laroi]) ™ DrigModel
—Build drug response models combining all available ol e molecutar foatures | [Drug » (org 2
information on cancer types and drugs | Unlabeled Molecular Data | /" Unlabeled Drug Data |
/" {e.g., 1 M LINCS expressions) | | (eg.,2MChEMBL drugs) |

= ML/DL methods applied
—ResNets, ConvNets, MC-dropout, population based training

— Semi-supervised deep learning, generative models

PDX mouse model

= Results achieved &R 7 v @
— Dose response model for drug pairs with 94% validation R2 Blopsy sample of tumor -
— Large-scale inference runs with uncertainty quantification SR AT

— Hyperparameter optimization tools n

—Drug candidates for patient-derived xenograft experiments
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Graph-based networks
Provably more powerful than fingerprints

= Graph convolution is fundamentally more powerful than fingerprints

A, Graph Convodutional Model ; ,-?‘-\_ B. Dirvered Asyetic Geaph Model ’T"‘ — Layer 0
—x T "‘_.'( = ._.{”' — Aromatic carbon (sp2 orbital)
Pt B Tt e Layer 1 _
® o9 o s &9 —a¥ Aromatic carbon (sp? orbital)
— C. Weave Modet - s . | D. Message Puui;\giNsuul Netwurk /.‘. Aromatic Cal’bon (sz Orbital)
s o2 I[N {1 . - Aliphatic carbon (sp? orbital)
0—-[\(!_‘ .—<"' . ’ ._< /—‘\(.
1 %e e * * e T 2400 T o8 L 2
e e : . i ’.o . s Te* ayer . .
e ) Aromatic carbon (sp? orbital)
E, Deep Tensor Newral Nemwork i | F. AN Aromatic carbon .(sz orbital)
y: { | 11 B o Nitrogen (sp? orbital)
4%l I“f ' Lo o Oxygen (sp? orbital)
: :.f $ ! :j.: $ - t Oxygen (sp? orbital)
© o ‘e

Xu, K., Hu, W, Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural
networks?. arXiv preprint arXiv:1810.00826.




e The red term describes correlation and

o is very difficult to account for

HY — BY=Y" (;—:':vzqo

i=1 e The Hamiltonian can be generalised:
2 1
=: B» zn:h_sq"’) H=T+V+U
+ ‘_Z e W where [/ is the mutual interaction
2o ri—ny energy of the electrons and V —

Z:,‘-\;, v(ry), the interaction with an
arbitary external field.

Pierre Hohenberg and Walter Kohn 1964
— density functional theory

~ 1072 seconds

Neural Message Passing for Quantum Chemistry

Justin Gilmer' Samuel S. Schoenholz! Patrick F. Riley* Oriol Vinyals' George E., Dahl! Apnl 2017’ >650 C|tat|ons



ARGONNE NATIONAL LAB

Advancing basic science and engineering to benefit the U.S.

Argonne serves the U.S. as a science and energy laboratory distinguished by the breadth of our
R&D capabilities and powerful suite of experimental and computational facilities

Argonne’s mission is to advance basic science and engineering to benefit the U.S. economy and
national security, it is not commercialization but strictly R&D

Argonne researchers conceive and develop new technologies, and transfer those technologies
to the partners that can deliver the greatest positive impact to the nation and the world

Argonne’s interests in commercialization do not conflict with industry, we seek complementary
business relationships
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High-performance
Computing

Computational Science

ARGONNE LEADERSHIP
COMPUTING FACILITY

Artificial intelligence

J Urban and building
technologies

\’ ENGINEERING

"RESEARCH Resiliency / Cyber
FACILITY- Security
A N CELL ANALYSIS, | ; o~
rgon ne: ~ NMODELNGAND | Energy Storage
NATIONAL LABORATORY PROTOTYPING
FACILITY

Connected and
autonomous vehicles and
e-mobility

3,200 employees

1,300 scientists and engineers
260 postdoctoral researchers

= Electric vehicles

ELECTROCHEMICA| A : . .
7,920 facility users ADVANCEDIPHOEOR SGURCE = CANALYSISAND ", Engines, fuels, emissions

USER FACILI 4 DIAGNOSTICS A 3 :
$830M FY18 operating budget G . //' | LABORATORYt oy .f: Smart manufacturing
L 4 f ~ 4
‘S: : i (C
X 3 :'1_
¢ fi

CENTER FOR NANOSCALE
MATERIALS



ADVANCED PHOTON SOURCE USER FACILITY

APS has supported pharma research since its opening in 2001

The Advanced Photon Source (APS) at Argonne provides ultra-bright, high-energy storage ring-
generated x-ray beams for research in almost all scientific disciplines. It is the brightest x-ray source

operating in the US today.

LRL-CAT: Lilly Research Laboratories operated IMCA-CAT: Industrial Macromolecular Crystallography Association

dedicated beam-line

= Express Crystallography: a full-service mail-in program
in protein crystallography to industrial, government and =
academic users of the APS

Established in 1990, IMCA is committed to the use of macromolecular
crystallography as a tool in drug discovery and product development.
Managed througha contract with Hauptman-Woodward Medical
Research Institute

Member companies: AbbVie, Bristol-Myers Squibb, Merck, Novartis,
and Pfizer

Non-member companies are invited to collect proprietary data at the
beamline via the IMCA-CAT subscription program



EXPANDING LEADERSHIP COMPUTING REACH

== .
abbbis
|

i 1
i
:;b

It

Reactive Mesoscale Simulations Large-Scale Computing on the CANcer Distributed Learning Environment

of Tribological Interfaces Connectomes of the Brain (CANDLE)

Pl: S. Sankaranarayanan, ANL PI: D. Gursoy, ANL Pl: R. Stevens, ANL

Insight to the complex processes that make oils, 3D reconstructions of high-resolution imaging will CANDLE is tackling the hardest deep learning
coatings, electrodes, and other electrochemical provide a clearer understanding of how even the problems in cancer research. Its first architecture
interfaces effective. Using Mira, this team smallest changes to the brain play a role in the release for large-scale model hyperparameter
discovered a self-healing, anti-wear coating that onset and evolution of neurological diseases, such exploration uses representative problems--coded as
drastically reduces friction. Their findings are being as Alzheimer’s and autism, and perhaps lead to deep learning problems--at the core of the

used to virtually test other potential self- improved treatments or even a cure. predictive oncology challenge. Future data
regenerating catalysts. parallelism work will allow the training of a single

model across several nodes.

y PR NESETAT TN
‘ _x U.S. DEPARTMENT OF ENERGY g

s gEpasue oF pusc: ; wiiantem ==
INCITE M t\(\g\)l_’

EXASCALE COMPUTING PROJECT



ECP applications target national problems in 6 strategic areas

National security

Stockpile
stewardship

Next-generation
electromagnetics
simulation of hostile
environment and

virtual flight testing for

hypersonic re-entry
vehicles

Turbine wind plant
efficiency

High-efficiency,
low-emission
combustion engine
and gas turbine
design

Materials design for
extreme
environments of
nuclear fission
and fusion reactors

Design and
commercialization
of Small Modular
Reactors

Subsurface use
for carbon capture,
petroleum extraction,
waste disposal

Scale-up of clean
fossil fuel combustion

Biofuel catalyst
design

Energy security

Additive
manufacturing
of qualifiable
metal parts
Reliable and
efficient planning
of the power grid
Seismic hazard
risk assessment

Urban planning

p— .

Economic security |8 Scientific discovery

Find, predict,
and control materials
and properties
Cosmological probe
of the standard model
of particle physics
Validate fundamental
laws of nature
Demystify origin of
chemical elements
Light source-enabled

analysis of protein
and molecular
structure and design

Whole-device model
of magnetically
confined fusion

plasmas

Accurate regional

impact assessments

in Earth system
models

Stress-resistant crop

analysis and catalytic
conversion

of biomass-derived
alcohols

Metagenomics
for analysis of
biogeochemical
cycles, climate
change,
environmental
remediation

Health care

Accelerate
and translate

cancer research




Wide ranging opportunities to Connect HPC and Al

Generative Models

= Steering of simulations
» Embedding simulation into ML methods

= Customized computational kernels
» Tuning applications parameters
» Generative models to compare with simulation Learned Function Accelerators

Physics Code Al Engine DOE Infrastructure
-

= Student (Al) Teacher (Sim) models =learned functions B e &
Nf)—=a Model Library

= Guided search through parameter spaces o | S o
o T R

Oata Storage

» Hybrid architectures HPC + Neuromorphic
» Many others

Al Accelerators




Integrating HPC and Al with high-throughput experiments

To accelerate development of new materials, chemicals, proteins, pathways and organisms

High Throughput HPC + Accelerated
Synthesis, line Lea

Characterization,
Data Imaging Data Analysis
Generation
- Experimental
Design +
Robotic Uncertainty
Experiments Quantification

Simulation +

Hypothesis testing " Machine Learning

76



