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Overview

1. Drug Discovery Pipeline
2. Giga-Docking
3. ML for drug discovery
4. Combining ML and Giga-Docking

5

How can we screen 10 billion compounds 
on various protein targets in a 
reasonable, painless, and not expensive 
way?



Overview of early stage drug discovery 
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FDA APPROVAL
111 products

CLINICAL TRIALS
6,300 products 

PRE CLINICAL
11,000 products

DRUG DISCOVERY
~108 products

Drug Discovery 
Funnel
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SYNTHESIS
Can we buy it, is it from available building 
blocks, or do we need to hire a medicinal 

chemist?

TOXICOLOGY
Is this compound reasonably safe?

INTERESTING?
Does this compound inhibit or interact with 

the target?

COMPOUND  
DISCOVERY

Mining massive building block or de-novo 
generated libraries

Target based compound 
screening 1060 estimated drug-like compounds

Lead Drug 
Discovery Funnel



Drug Discovery Pipeline
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Searching for new drugs is like fishing in the 
dark: the prospect of catching something is 

very uncertain, and it requires patience, 
skill and - of course - money.

• Paul Ehrlich (1854-1915) 
• Magic Bullet: Ehrlich formed an 

idea that it could be possible to kill 
specific microbes which cause 
diseases in the body, without 
harming the body itself

• Estimated 2M proteins in the human 
body

• Estimated 1060 compounds

Video series from Roche youtu.be/bIFnOVKd2Ko



Proteins 101

§ Primary structure
– sequence of amino acids in a 

polypeptide chain
§ Secondary structure

– refers to local folded structures that 
form within a polypeptide due to 
interactions between atoms of the 
backbone.

§ Tertiary structure
– The tertiary structure is primarily due 

to interactions between the R groups 
of the amino acids that make up the 
protein.

§ Quaternary structure
– Multiple protein subunits come 

together to form a larger complex
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Computational Chemistry 

§ De-facto standard for communicating molecular structures
– It’s somewhat difficult as different orders of the string exist 
– Streo0chemistry is hard

§ DFS on graph
– The chemical graph is first trimmed to remove hydrogen atoms and cycles are 

broken to turn it into a spanning tree. 
– Where cycles have been broken, numeric suffix labels are included to indicate 

the connected nodes. Parentheses are used to indicate points of branching on 
the tree.

SMILES  Simplified Molecular Input Line Entry System

11
wiki

https://en.wikipedia.org/wiki/Spanning_tree_(mathematics)
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“This evaluation has shown that docking 
programs are usually successful…the difficulty 
was not in positioning the ligand within the 
binding site but in reproduction of the small-
molecule conformation.”



Structural Docking

§ docking is a method which predicts the preferred orientation of one 
molecule to a second when bound to each other to form a stable complex.

§ It is a simple problem to understand, figure out how to fit the ligand onto the 
protein

§ The search space in theory consists of all possible orientations 
and conformations of the protein paired with the ligand.
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Exhaustive shape fitting

Inputs: molecular dataset (2D SMILES strings),
target protein structure,
search parameters,
scoring function f

For ligand pose from strategy
Result = max(Result, f(Protein pose, Ligand pose))

Diagram of X-ray crystallography



Targets and binding sites 

Pocket 1

Pocket 2
Pocket 3

NSP9 
x2

ADRP 
x 2

Pocket 1

NSP1
5 x 2

Pocket 1

Pocket 2

Pocket 3

CoV_RB
D x 1

Pocket 1Pocket 4

Pocket 5

Pocket 2

Pocket 3

Automatic pocket detection
Le Guilloux, V., Schmidtke, P. & Tuffery, P. Fpocket: An open source 
platform for ligand pocket detection. BMC Bioinformatics 10, 168 
(2009). https://doi.org/10.1186/1471-2105-10-168
Pocket 1 :

Score :         0.915
Druggability Score :    0.920
Number of Alpha Spheres :       80
Total SASA :    16.657
Polar SASA :    2.165
Apolar SASA :   14.492
Volume :        599.003
Mean local hydrophobic density :        18.690
Mean alpha sphere radius :      3.963
Mean alp. sph. solvent access :         0.523
Apolar alpha sphere proportion :        0.363
Hydrophobicity score:   33.000
Volume score:    3.143
Polarity score:  4
Charge score :   0
Proportion of polar atoms:      39.583
Alpha sphere density :  5.345
Cent. of mass - Alpha Sphere max dist:  14.313
Flexibility :   0.118

Pocket 2 :
Score :         0.689
Druggability Score :    0.834
Number of Alpha Spheres :       67
Total SASA :    8.089
Polar SASA :    3.259
Apolar SASA :   4.831
Volume :        367.098
Mean local hydrophobic density :        20.545
Mean alpha sphere radius :      3.909
Mean alp. sph. solvent access :         0.483
Apolar alpha sphere proportion :        0.328
Hydrophobicity score:   27.125
Volume score:    2.875
Polarity score:  3
Charge score :   1
Proportion of polar atoms:      40.541
Alpha sphere density :  3.665
Cent. of mass - Alpha Sphere max dist:  10.679
Flexibility :   0.124
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Protein-Ligand Interactions
§ The most realistic is quantum mechanical  
§ The Born-Oppenheimer (BO) approximation
§ force field constructed from simple analytical and differentiable functions. 

16

How can we measure the attraction?
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It’s easy to fall pray to Ehrlich’s idea of the magic bullet 



MD Simulation
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Cluster states, color by protein ligand contacts



MD Simulation
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Deep Drive MD

20

H. Ma, D. Bhowmik, H. Lee, M. Trill, S. Jha, A. Ramanathan, Scalable Execution of 
Protein Folding with Deep Learning Driven Adaptive Molecular Simulations, ParCo
2019



BFE workflow
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1,000,000 poses docked

25,000 systems build and 
minimized

625 systems simulated 

250,000,000 possible 
compounds

6,250,000 possible 
compounds

156,250 possible 
compounds

Structural Docking

System building 
and minimization

ML Screening

MMGBSA (simulation)

Current sample workflow

Top   2.5%

~8 seconds per ligand per CPU core

~30 seconds per ligand per GPU 

~15 minutes per ligand per GPU 

~0.001 seconds per task per 
GPU

250,000,000 poses docked

6,250,000 systems build 
and minimized

156,250 systems simulated 

Goal Workflow

10,000,000,000 compounds 
screened with AI models

How can we get simulation level 
accuracy of binding free energy on 
a dataset with over 10B ligands?

(that’s about 12H on 1024 summit nodes)

Top   2.5%

Top   2.5%

Top   2.5%

Top   2.5%

System Components



High Throughput Docking (HT Docking)
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On Demand Library Sizes

§ Real Explorer* – Estimated 13B cpds
§ Real – Library 1.2B cpds
§ Diverse REAL drug-like, 15M cpds
§ REAL lead-like, 868M cpds
§ REAL 350/3 lead-like, 378M cpds

§ Use about 115k building blocks

23

“Machine-learning models that we train on a smaller randomized 
reaction dataset outperform models trained on larger human-
selected reaction datasets, demonstrating the importance of 
identifying and addressing anthropogenic biases in scientific data.” 

*synthesis time is 3-4 weeks 
with an average success rate 
of over 80%



HT Docking

§ Lyu et al. found that it was essential to screen the 
full library to discover the most biologically active 
compounds

§ Human inspection was somewhat similar
§ the molecules prioritized by human inspection 

typically had better affinities: 44% of these were 
submicromolar, which was true of only 27% of those 
prioritized by docking score alone.

.
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1. Dock 99 million molecules
i. Average of 4,054 orientations
ii. Average of 280 conformers

2. Cluster top-ranked 1 million
i. Remove similarity compounds to known inhibitors
ii. Reducing redundancy

3. Fifty-one top-ranking molecules
i. 44 (86%) were successfully synthesized
ii. 5 compounds measurably inhibited, 11% hit rate

4. Lead Optimization
i. To optimize the five initial hits, we chose 90 well-

scoring analogues from within the make-on-
demand library

ii. Over half were active on testing, improving the 
affinity of each of the 5 hits by 3- to 29-fold
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RADICAL-Cybertools & COVID-19 
Scientific Performance Computational 

Performance  
Platforms Used

Workflow-0

HT Docking

● 300K/h ligands on 
Frontera (TACC) on 4 
nodes

● 50K/h on Theta (ANL) on 
128 nodes

Linear weak scaling up to 
512 nodes (TBC)

● Frontera (TACC)
● Comet (SDSC)
● Theta (ANL)
● Stampede2 

(TACC)

Workflow-1
Automated 
System 
building and 
MMGBSA

● Andre to provide ● Typical at 128 GPUs
● Planned at 1024 GPUs

● Summit (OLCF)
● Longhorn 

(TACC) TBC

Workflow-2 
(DeepDrive
MD)

● O(10)-O(100) faster 
sampling compared to 
Anton trajectory for BBA, 
VHP proteins

● For COVID19 assembly 
proteins TBC

● Typical 144 GPUs (128 
MD + 16 CVAE)

● Up to 6 concurrent 
workflows

● Summit (OLCF)
● Longhorn 

(TACC) TBC

http://radical.rutgers.edu/

• “The throughput 
averaged 1s per library 
compound” – Lyu paper

• “1,513,728,000” CPU 
seconds to compute on 
enamine real database 
(1.4B)

• We’re running around 
0.5s per library 
compound, working on 
bringing that up



Aurora: HPC and AI
> ExaFlops/s for HPC
>> Exaops/s for AI

Architecture supports three types of computing
§ Large-scale Simulation (PDEs, traditional HPC)
§ Data Intensive Applications (scalable science pipelines)
§ Deep Learning and Emerging Science AI (training and inferencing)



Accelerating with ML



Quick bit on drug discovery philosophy

Brute-force
§Need some sort of oracle to filter space

I see two camps out here

29

Scaffold hoping
§Once a good hit is found, sample 

densely around it



Accelerating with ML

30

Recall, when you’re docking you are 
exhaustively finding a pose, wasting 
CPU cycles and IO

dock
this side

Ignore this side
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Feinberg, Evan N., et al. "Potentialnet for 
molecular property prediction." ACS central 
science 4.11 (2018): 1520-1530.

Build an ML model that:
• Takes a ligand in and 

featurize it
• Outputs some number
• Take that number as this is 

a good compound go 
ahead and dock or bad 
compounds don’t waste 
your time 

Gupta, Anvita, et al. "Generative recurrent networks for de novo drug 
design." Molecular informatics 37.1-2 (2018): 1700111.



Example simple model
Use a random forest model on cheminformatic descriptors 

32

Generate Descriptors

Build a Model



Analyzing the models

§ Metrics become a difficult task. 
§ Suppose just want the top 5%, we can bin the predictions 

that come out of the model
[[1424 50] [ 50 28]]

33

1424 50

50 28



§ We need two things to decide on a cut-off. We need to know how many downstream tasks we can afford to 
dock, how many of the top leads we want to find, and what our tolerance is for missing some. 

§ Let’s compute it:
§ For leads_desired in top [1%, 10%, 50%]

For number_able_to_dock in predicted top [1%, 10%, 50%]
score[leads_desired][number_able_to_dock] = 

how many of my top predictions I was able to dock found the desired leads?

Now let’s just look and see where in that grid we were able to capture the most part of the leads

34



Clearly not the best model, but you get the point

35
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Dock 
software

REAL database, 1.2Bn cpds
I estimate only 1M of these will be a 
solid interesting poses

Ingest 2048 compounds per second per GPU 

Pass through 1 ligands per second per core 

2 GPUs

56 Cores

Models need to 
perfectly capture the 
top 1.36% scoring 

compounds



Ensemble Docking Strategy
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Example results from an ensemble docking run on Mpro from COVID-19

38



Filtering space with ML Models

§ ResNet-like model trained using 2D image 
depictions of molecules.

§ Model shows we can retrieve the top 0.1% 
of dock scorers while only screening the top 
0.5% of the database. 

§ Rather than docking 1 billion compounds to 
get the answer, we only need to dock 5M 
compounds.

§ At the end, we have the same computed 
structures as the non-ML group, we just 
used 200x less CPU compute. 

§ 8,192 ligands per node/s can be inferenced 
on a GPU while only 56 ligands can be 
docked on the corresponding CPU node/s

39

130X speed up over non-ML approach



Images as model features

§ Taking from the success of image convolutional models from computer vision tasks:
– Can we use the image directly instead of computing descriptors or fingerprints to input the drug into our 

model?

§ In practice, imagine taking every smile string and generating the 2D depiction. We use that instead of the 
string, or the descriptors. 



Example

§ Suppose we wanted a model to count hydrogen bond acceptors. We would use this image (left) as 
input to our model. The model recognizes and counts the h-acceptors.



Image Attention

What’s going on with images?
§ Added simple attention in a middle 

ResNet layer through a large conv filter 
put through softmax (globally)

§ Not based on cells, due to tower 
structure

§ Prediction value is area under the dose 
response curve





Filtering space with ML Models

§ ResNet-like model trained using 2D image 
depictions of molecules.

§ Model shows we can retrieve the top 0.1% 
of dock scorers while only screening the top 
0.5% of the database. 

§ Rather than docking 1 billion compounds to 
get the answer, we only need to dock 5M 
compounds.

§ At the end, we have the same computed 
structures as the non-ML group, we just 
used 200x less CPU compute. 

§ 102,400 ligands per node/s can be 
inferenced on a CS-1 while only 56 ligands 
can be docked on the corresponding CPU 
node/s

44

130X speed up over non-ML approach

990X speed up with successful hardware 
accelerators



Replicating Lyu et al. Giga-Docking with 200x less CPU compute

45

Trained message-passing network with 500K ampC

What if we replace the need to simulate every molecule?

*preliminary work, first  approximation of a good model

Screen 10% of molecules, 
get all of the top 0.1%

Screen 1% of molecules,  you’ll
Have 50% of the true top 1%

Screen 1% of molecules,  you’ll
Have 70% of the true top 0.05%



Acceleration for filtering models

§ Given a function you want to filter F, how can we determine what kind of acceleration you can get?
§ Two components

– Model enrichment: how many samples can you save running on F?
– Model speed: how long does the model take to run compared to F?

– ! ∗ #$%&&'
! ∗()'&*$%&&' + ,# ∗ ! ∗ #$%&&'

46



Different approaches to ML and Docking



Look at ML through some lenses

48

Surrogate Modeling

ML-driven optimization

Library generation

How to utilize AI for replacing our 
applications for speed?

How can AI expand the space of 
possibilities?

How can AI do these tasks
simultaneously?



§Expand knowledge: e.g., machine reading
§Autoencoders to navigate chemical and 

functional spaces
§Active learning to choose next experiment 

or simulation
§Reinforcement learning to guide 

experiments and/or simulations

49Ren et al. Sci Adv. (2017) eaaq1566Sanchez-Lengeling et al., Science 361, 360–365 (2018) 

AI can enable a new era of discovery based on automated search

High-throughput 
experiment / 
simulation 



Machine Learning In Drug Discovery



Integrating ML:
Pipelines that are ML designed.
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RNN SMILES Modeling

52

Gupta, Anvita, et al. "Generative recurrent networks for de novo drug 
design." Molecular informatics 37.1-2 (2018): 1700111.



§ Rather than randomly drawing compounds from a library….

§ What if we imagine a stream of compounds, all with some good properties, and then we want to work on 
those?

RNNs create a new paradigm for streaming development

53
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GPU

10,000 per second

100 s/s100 s/s100 s/s100 s/s

Super fast, modern 
generative algorithms

Single threaded algorithms for CPU 
post-processing

Even slower simulations

IBM AC922, 6 GPU node. Balanced
Heavily towards GPU, not CPU

1 SMILE per second

5000 Seconds per smiles



In order to keep GPUs and CPUs hot, unique stream of molecules needs to stay constant

55

Database,
ExperimentsTop 

0.001%



Simulation: Estimation of Properties
Update ML

Models

Active 
Learning 

Prioritization

ML Property Prediction Pipeline

ML Generator of Candidates

Filter
Candidates

ML

UQ Scoring 
and 

Optimization

Experiment: Estimation of Properties

Layered workflow 

Pure ML “constant time” (fast loop) Mixed/Variable time (slow loop)



Drug discovery 
HIGH THROUGHPUT

SCREENING
Generating 
Drug Leads

• Generative Neural 
Networks

• Language modeling
• Graphical models

• Simulation surrogate 
models

• Uncertainty calibrated 
• Ranking Neural networks

Database 
of Leads



But there is a sense we are just creeping 
Ahead with baby steps in improvement
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RL-Dock

§ As a newcomer, the process seems lengthy…
– Come up leads
– Find targets and crystal structures
– Look at conformers 
– Hours of compute simulating compound
– Have to start over for new optimization or when toxicity testing comes

Reinforcement Learning Docking and Simulation

Designing a drug inside a flexible pocket in seconds?

Gisbert Schneider 
Department of Chemistry and Applied Biosciences, 
Institute of Pharmaceutical Sciences, Swiss 
Federal Institute of Technology (ETH) 
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Connecting HPC and AI

§ Steering of simulations
§ Embedding simulation into ML methods
§ Customized computational kernels 
§ Tuning applications parameters
§ Generative models to compare with simulation
§ Student (AI) Teacher (Sim) models ⟹learned functions
§ Guided search through parameter spaces
§ Hybrid architectures HPC + Neuromorphic
§ Many, many more

In addition to partnerships in AI applications, there are considerable 
opportunities in foundational methods development, software and software 
infrastructure for AI workflows and advanced hardware architectures for AI, 
below we highlight some ideas in the HPC + AI space

Generative  Models

AI Accelerators



Main workflow à Epitope analysis workflow
Identify interacting regions and 

potentially mutated regions 
[COVID-19, SARS, MERS]

Small molecule vs. mutating regions across 
coronaviruses

Adaptive MD to determine 
protein-ligand specificity

Exploit similarities in ligand 
binding to identify novel 

states

Evolution group provides inputs

Target novel states for 
docking and refinement

Apo-state (ligand-free state) 
simulations for [COVID-19, 

SARS, MERS]

0
DeepDriveMD

Runs on 
OLCF 
Summit

2COVID Update



Q&A
To pose a question, you can write your question 

in the “Questions” tab

Webinar 
series

A Centre of Excellence in Computational Biomedicine

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 675451

The webinar series is 
run in collaboration with:



Thank you for participating!

…don’t forget to fill in our feedback 
questionnaire…

Visit the CompBioMed website (www.compbiomed.eu/training)
for a full recording of this and other webinars,

to download the slides 
and to keep updated on our upcoming trainings

Webinar 
series

A Centre of Excellence in Computational Biomedicine

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 675451

The webinar series is 
run in collaboration with:

http://www.compbiomed.eu/)
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aclyde@anl.gov



Molecular modalities

§ 2D Graphs
§ 3D Coordinates 
§ 2D Images
§ 3D Images (voxels)
§ SMILES 

– Canonical
– Kekule

§ SELFIES (L2 Chomsky)
§ Surface
§ Conformer Sets

What is a “molecule” in the sense we’re after?

66

SMILES 
Database

Software
-Rdkit

§ CFG models
§ Docked models
§ Chemical descriptors
§ Fingerprints
§ 3D waveform
§ 3D density
§ MACCS
§ …many more in literaturehow do we chose?



Deep Learning Enabled Precision Medicine for Cancer
Rick Stevens (ANL PI), with NCI, LANL, LLNL, ORNL
§ Opportunity

– Increasing biological data require supercomputer-powered 
deep learning models in challenging cancer problems

§ Argonne assets
– Scalable machine learning
– Expertise in computational biology and cheminformatics

§ Strategy
– Develop an exascale deep learning framework (CANDLE)
– Build drug response models combining all available 

information on cancer types and drugs
§ ML/DL methods applied

– ResNets, ConvNets, MC-dropout, population based training
– Semi-supervised deep learning, generative models

§ Results achieved
– Dose response model for drug pairs with 94% validation R2

– Large-scale inference runs with uncertainty quantification
– Hyperparameter optimization tools 
– Drug candidates for patient-derived xenograft experiments

67



Graph-based networks

§ Graph convolution is fundamentally more powerful than fingerprints

Provably more powerful than fingerprints

68

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural 
networks?. arXiv preprint arXiv:1810.00826.



Pierre Hohenberg and Walter Kohn 1964 
— density functional theory 

April 2017, >650 citations



ARGONNE NATIONAL LAB
Advancing basic science and engineering to benefit the U.S.

70

Argonne serves the U.S. as a science and energy laboratory distinguished by the breadth of our 
R&D capabilities and powerful suite of experimental and computational facilities

Argonne’s mission is to advance basic science and engineering to benefit the U.S. economy and 
national security, it is not commercialization but strictly R&D

Argonne researchers conceive and develop new technologies, and transfer those technologies 
to the partners that can deliver the greatest positive impact to the nation and the world

Argonne’s interests in commercialization do not conflict with industry, we seek complementary 
business relationships



§ High-performance 
Computing

§ Computational Science
§ Artificial intelligence
§ Urban and building 

technologies
§ Resiliency / Cyber 

Security
§ Energy Storage

§ Connected and 
autonomous vehicles and 
e-mobility

§ Electric vehicles
§ Engines, fuels, emissions 
§ Smart manufacturing

§ Materials characterization
§ Nanomaterials

3,200 employees
1,300 scientists and engineers
260 postdoctoral researchers
7,920 facility users
$830M FY18 operating budget

ARGONNE LEADERSHIP 
COMPUTING FACILITY

ADVANCED PHOTON SOURCE
USER FACILITY

CENTER FOR NANOSCALE
MATERIALS

MATERIALS 
ENGINEERING 
RESEARCH 
FACILITY

CELL ANALYSIS, 
MODELING AND 
PROTOTYPING
FACILITY

ELECTROCHEMICAL
ANALYSIS AND 
DIAGNOSTICS
LABORATORY



ADVANCED PHOTON SOURCE USER FACILITY
APS has supported pharma research since its opening in 2001

The Advanced Photon Source (APS) at Argonne provides ultra-bright, high-energy storage ring-
generated x-ray beams for research in almost all scientific disciplines. It is the brightest x-ray source 
operating in the US today.

LRL-CAT: Lilly Research Laboratories operated 
dedicated beam-line

§ Express Crystallography: a full-service mail-in program 
in protein crystallography to industrial, government and 
academic users of the APS

IMCA-CAT: Industrial Macromolecular Crystallography Association

§ Established in 1990, IMCA is committed to the use of macromolecular 
crystallography as a tool in drug discovery and product development.

§ Managed througha contract with Hauptman-Woodward Medical 
Research Institute

§ Member companies: AbbVie, Bristol-Myers Squibb, Merck, Novartis, 
and Pfizer

§ Non-member companies are invited to collect proprietary data at the 
beamline via the IMCA-CAT subscription program



EXPANDING LEADERSHIP COMPUTING REACH 

Reactive Mesoscale Simulations 
of Tribological Interfaces
PI: S. Sankaranarayanan, ANL
Insight to the complex processes that make oils, 
coatings, electrodes, and other electrochemical 
interfaces effective. Using Mira, this team 
discovered a self-healing, anti-wear coating that 
drastically reduces friction. Their findings are being 
used to virtually test other potential self-
regenerating catalysts.

Large-Scale Computing on the 
Connectomes of the Brain
PI: D. Gursoy, ANL
3D reconstructions of high-resolution imaging will 
provide a clearer understanding of how even the 
smallest changes to the brain play a role in the 
onset and evolution of neurological diseases, such 
as Alzheimer’s and autism, and perhaps lead to 
improved treatments or even a cure. 

CANcer Distributed Learning Environment 
(CANDLE)
PI: R. Stevens, ANL
CANDLE is tackling the hardest deep learning 
problems in cancer research. Its first architecture 
release for large-scale model hyperparameter 
exploration uses representative problems--coded as 
deep learning problems--at the core of the 
predictive oncology challenge. Future data 
parallelism work will allow the training of a single 
model across several nodes.

DataSimulation Learning



National security
Stockpile 

stewardship
Next-generation 
electromagnetics 

simulation of hostile 
environment and 

virtual flight testing for 
hypersonic re-entry 

vehicles 

Energy security
Turbine wind plant 

efficiency
High-efficiency, 
low-emission 

combustion engine 
and gas turbine 

design
Materials design for 

extreme 
environments of 
nuclear fission 

and fusion reactors
Design and 

commercialization 
of Small Modular 

Reactors
Subsurface use 

for carbon capture, 
petroleum extraction, 

waste disposal
Scale-up of clean 

fossil fuel combustion
Biofuel catalyst 

design

Scientific discovery
Find, predict, 

and control materials 
and properties

Cosmological probe 
of the standard model 

of particle physics
Validate fundamental 

laws of nature
Demystify origin of 
chemical elements

Light source-enabled 
analysis of protein 

and molecular 
structure and design
Whole-device model 

of magnetically  
confined fusion 

plasmas

Earth system
Accurate regional 

impact assessments 
in Earth system 

models
Stress-resistant crop 
analysis and catalytic 

conversion 
of biomass-derived 

alcohols
Metagenomics 
for analysis of 

biogeochemical 
cycles, climate 

change, 
environmental 
remediation

Economic security
Additive 

manufacturing 
of qualifiable 
metal parts

Reliable and 
efficient planning 
of the power grid
Seismic hazard 
risk assessment
Urban planning

Health care
Accelerate 

and translate 
cancer research

ECP applications target national problems in 6 strategic areas



Wide ranging opportunities to Connect HPC and AI

§ Steering of simulations
§ Embedding simulation into ML methods
§ Customized computational kernels 
§ Tuning applications parameters
§ Generative models to compare with simulation
§ Student (AI) Teacher (Sim) models ⟹learned functions
§ Guided search through parameter spaces
§ Hybrid architectures HPC + Neuromorphic
§ Many others

Generative  Models

AI Accelerators



Integrating HPC and AI with high-throughput experiments
To accelerate development of new materials, chemicals, proteins, pathways and organisms
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