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4 Executive Summary 
 
This report is complementary to D2.2 Report on Deployment of Deep Track Tools and     
Services to Improve Efficiency of Research and Facilitating Access to CoE Capabilities.  
 
In this document we focus on two issues which result in a combined strategy. On one 
hand, we look at the current status of those codes from the CompBioMed software stack 
which are on the road to exascale computing. The CompBioMed software stack is 
diverse in nature with three specific compute patterns (described below) which are 
relevant to the code base making the performance and co-design activities related to it 
equally diverse.  On the other hand, we consider the porting to current architectures 
which are considered as "novel", notably the strongly emergent Cloud Computing model 
with particular focus on its innovations with respect to HPC capabilities. As we describe 
in the present document, addressing both issues concurrently results in improving what 
is becoming a powerful combined solution: HPC-Cloud computing. Whilst we recognise 
that cloud computing has its advantages, this is just another tool in the goal of expanding 
our codes to run on future exascale machines. This report is a selected compilation of 
the research done in this area by CompBioMed partners, in papers published or on the 
way to being published. 

5 Introduction 
 
Until relatively recent times, a large majority of those researchers who strongly rely for 
their investigations on computational tools were confident that Moore's law would let 
them obtain progressively better results simply by awaiting a new generation of 
hardware. Since the 1970's, Moore's law established that computing power should 
roughly speaking double every two years. Therefore, one could reasonably expect that 
the same code compiled in a new architecture every two years should run twice as fast 
as the previous one, providing that its software design does not change that much 
(neither improving nor impairing its performance). However, as supercomputers 
became more accessible, a much more powerful "law" appeared to boost research by 
orders of magnitude beyond Moore's Law: parallelism. Computer parallelism allows 
tasks to be performed at the same time—concurrently—by distributing work, data or 
both. This potential can be thoroughly exploited if and only if (a) both hardware and 
software is parallelisation compliant and (b) software design maps to hardware 
architecture. It is also true that innovaitons in software based on new ideas and methods 
can accelerate performance dramatically and in a way not directly related to Moore’s 
law and hardware related acceleration. This is rendered more complex as hardware 
vendors are continuously evolving their products, resulting from time to time in 
substantial changes of paradigm. Keeping pace with such computer changes is a 
significant challenge. 
 
Biomedical research is particularly sensitive to computational tools and their efficiency 
on large systems because, quoting PRACE experts [1], "Life science is one of the fastest-
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growing users of high-performance computing both in Europe and worldwide, with a 
wide range of uses from chemistry, bioinformatics, and structural biology to diagnosis 
and treatments in clinical settings." However for several reasons, biomedical systems 
are challenging to simulate. Simulating the human body requires complex 
computational models that, to be accurate, require very fine space and time 
discretisation. The models are usually non-linear, increasing the need for sophisticated 
solver strategies, which are always computationally expensive. Compounding this, space 
and time scales range extremely widely in these systems, each scale being solved using 
a different model, substantially increasing the complexity through the strong multi-scale 
and multi-physics character of such problems. In order to deliver results which can be 
used in clinical contexts, we need to develop and deploy actionable codes – ones that 
produce accurate and precise predictions of clinically relevant scenarios ahead of 
interventions being performed by clinicians. To receive regulatory approval for such 
applications, the codes must be certified in terms of VVUQ – please spell this out. All this 
requires ultra-high end HPC. 
 
Mapping efficiently the complex software arising from such modelling to the HPC 
hardware is one mission of CompBioMed which enables us to put it in the hands of the 
users who require it, as an equally important mission of the CoE. This document 
describes the efforts made so far in CompBioMed to analyse the porting and 
deployment of the project's software stack on what is currently considered "novel" 
architectures (among them notably HPC-based Cloud Computing) and, on future 
predictions of HPC hardware, i.e., the exascale computing systems.  

6 CompBioMed High Performance Compute Patterns 
 
In [REF: Multiscale Computing for science and engineering in the era of Exascale 
performance, Hoekstra et al., Phil Trans A, 2019] the authors define a taxonomy for 
multiscale modelling applications and HPC based on computing patterns. In this 
document and inspired by those ideas, we extend them to general applications (not only 
multiscale). The proposed CompBioMed three key patterns are: 
 

1. Monolithic – Deployment of a single computational job spread over a large 
number of compute resources, including workflows necessary to manage such 
large computational jobs  

2. Coupled – Deployment of multiple, communicating subcomponents each 
assigned to a sub-section of compute resources. In an heterogenous system, 
each sub-section can be of different architecture. The application 
subcomponents can be different codes or different instances of the same code.  

3. Ensemble – Multiple instances of an application launched in parallel with 
different input data; each such instance may be a monolithic parallel code, itself 
running at extreme scale. These are now becoming part of highly complex data 
intensive workflows combining conventional HPC applications with machine 
learning and/or AI components, as well as for validation, verification and 
uncertainty quantification.  
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This categorisation is not unique to CompBioMed, it is recognized widely in the HPC 
community as key “usage patterns”. It is worth mentioning that the Ensemble pattern is 
sometimes considered as two separate class: ensemble and complex workflows. In this 
document we discuss it as a single class. These patterns represent significant differences 
in the deployment strategy that should be taken into account when assessing scaling 
and performance as part of exascale readiness. 
 

In CompBioMed, and inheriting the characteristics of the computational medicine 
domain, we have applications falling under the three aforementioned patterns. 
 

7 HPC systems: those novel today, those novel tomorrow  
 
HPC systems are becoming more and more complex and the hardware is exposing 
massive parallelism at all levels, with their own needs depending on the computational 
pattern, as described below. Exploiting these resources is a huge challenge. In order for 
the reader to understand the concepts in the following sections, we first explain briefly 
and in layman's terms the different levels of parallelism available on a supercomputer. 
We do not aim to give a full description of the state of the art of the different 
architectures available in supercomputers, but a general overview of the most common 
approaches and concepts. This follows the ideas introduced in [2], whose authors belong 
to the CompBioMed consortium. We firstly describe hardware and then software.  
 

 
Figure 1. Anatomy of a supercomputer. Memory latency and size (left) and parallelism (right) to exploit 

the different levels of hardware (middle). Extracted from [1]. 
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7.1 Hardware: the supercomputer architecture 

 
Figure 1 shows the different levels of hardware in a supercomputer together with the 
associated memory latency and size, as well as the type of parallelism to exploit them. 
The numbers are expressed in terms of orders of magnitude and provide a general idea, 
as they are system dependent.  
 
These levels are the following: 
 
Core/Central Processing Unit (CPU): We could consider a core as the first unit of 
computation, as a core is able to decode instructions and execute them. Here, within 
the core, we find the first and lowest level of parallelism: instruction-level parallelism. 
This parallelism is offered by so-called superscalar processors, and its main characteristic 
is that they can execute more than one instruction during a clock cycle. There are several 
developments that allow instruction-level parallelism such as pipelining, out-of-order 
execution, or multiple execution units. These techniques allow more than one 
instruction per cycle (IPC). The exploitation of this parallelism relies mainly on the 
compiler and on the hardware unit itself. Reordering of instructions, branch prediction, 
renaming or memory access optimisation are some of the techniques that help to 
achieve a high level of instruction parallelism.  

 
At this level, complementary to instruction-level parallelism, we can find data-level 
parallelism offered by vectorisation. Vectorisation allows the application of the same 
operation to multiple pieces of data via a single instruction. Nowadays almost every 
processor in the market provides some kind of vectorisation through SIMD registers and 
compilers allow exploiting these features. For instance, MareNostrum's processors 
allow 32-byte (AVX2) and 64-byte (IMCI/AVX-512) SIMD registers in its different 
partitions. It is worth mentioning that the programmer is responsible for exposing this 
parallelisation level, requiring coding good practices. Otherwise, the compiler does not 
identify data level parallelism. The performance obtained from this is highly dependent 
upon the type of code being executed. Scientific applications or numerical simulations 
can often benefit from vectorisation as the computation they must perform usually 
consists of applying the same operation to large pieces of independent data.  

 
Socket/Chip: Coupling of several cores in the same integrated circuit is a common 
approach and is usually referred to as multicore or many-core processors (depending on 
the amount of cores it aggregates). One of the main advantages is that the different 
cores share some levels of cache memory. The cache memory is a static random 
access memory (SRAM), which the chip can access faster than regular random 
access memory (RAM). The shared caches can improve the reuse of data by different 
threads running on cores in the same socket, with the added advantage of the cores 
being close on the same die (higher clock rates, less signal degradation, less power).  
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Having several cores in the same socket allows thread-level parallelism, as each different 
core can run a different sequence of instructions in parallel whilst having access to the 
same data.  
 
These two deepest levels, "Core/CPU" and "Socket/Chip" are and will be definitely 
present in any future architecture, being the deepest layers at which a programmer can 
have control. Therefore, the three patterns should devote equal optimization effort 
here: in the three cases data and process ordering will be very influential on, for 
instance, memory access and vectorization.  

 
Accelerators/GPUs: Accelerators are specialised hardware that consist of hundreds of 
simpler computing units that can work in parallel to solve specific calculations over large 
pieces of data. They include their own memory.  

 
Accelerators need a central processing unit (CPU) to process the main code and off-load 
the specific kernels to them. To exploit the massive parallelism available within the 
GPUs, the application kernels must be rewritten. The dominant programming language 
is OpenCL (Open Computing Language) that is cross-platform, while other alternatives 
are vendor dependent, such as nVIDIA's Compute Unified Device 
Architecture programming language, widely known as CUDA.  
 
In monolithic patterns, codes can run either completely on the accelerators or offloading 
part of them (for instance the solver) to the accelerator while the other part runs in the 
host. Both situations represent different challenges, and in the second one 
host/accelerator data transfer becomes critical. Data transfer is also critical in 
heterogeneous coupled patterns.  

 
Node: A computational node can include one or several sockets and accelerators along 
with main memory and Input/Output. A computational node is, therefore, the minimum 
autonomous computation unit as it includes cores to compute, memory to store data, 
and a network interface to communicate. The main classification of shared memory 
nodes is based on the kind of memory access they have: uniform memory access (UMA) 
or non-uniform memory access (NUMA). In UMA systems, the memory system is 
common to all the processors and this means that there is just one memory controller 
that can only serve one request at a time; when several cores are issuing memory 
requests, this becomes a bottleneck. On the other hand, NUMA nodes partition the 
memory among the different processors; although the main memory is seen as a whole, 
the access time depends on the memory location relative to the processor issuing the 
request.  

 
Within the node, thread-level parallelism can also be exploited as the memory is shared 
among the different cores inside the node.  
 
This level is very important specially for monolithical applications or coupled ones in 
which of the components is a monolithical one.  
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Cluster/Supercomputer: A supercomputer is an aggregation of nodes connected 
through a high-speed network with a specialised topology. We can find different 
network topologies (i.e., how the nodes are connected), such as a 2D or 3D torus or 
hypercube. The kind of network topology will determine the number of hops that a 
message will need to reach its destination or communication bottlenecks. A 
supercomputer usually includes a distributed file system to offer a unified view of the 
cluster from the user point of view.  
 
The parallelism that can be used at the supercomputer level is a distributed memory 
approach. In this case, different processes can run in different nodes of the cluster and 
communicate through the interconnect network when necessary.  
 
We have seen all the computational elements that form a supercomputer from a 
hierarchical point of view. All the levels explained above also include different levels of 
storage that are organised in a hierarchy too. Starting from the core, we can find the 
registers where the operands of the instructions that will be executed are stored. 
Usually included also in the core or CPU, we can find the first level of cache. This is the 
smallest and fastest one; it is common that it is divided into two parts: one to store 
instructions (L1i) and another to store data (L1d). The second level of cache (L2) is bigger, 
still fast, and placed close to the core too. A common configuration is that the third level 
of cache (L3) is shared at the socket and L1 and L2 are private to the core, but any 
combination is possible.  
 
The main memory can be of several gigabytes (GB) and much slower than the caches. It 
is shared among the different processors of the node, but as we have explained before 
it can have a non-uniform memory access (NUMA), meaning that it is divided in pieces 
among the different sockets. At the supercomputer level, we find the disk that can store 
petabytes of data. For instance BSC's MareNostrum IV has a total capacity of 24.6 
petabytes, EPCC's Archer 4.4 petabytes and SURFsara's Cartessius 7.7 petabytes. 
 
At this level, the three patterns reveal all their complexity and variety. Monolithic 
applications stress the OpenMP/MPI interconnects in a relatively uniform way, with 
eventually load balance problems which can be addressed with careful programming 
and/or smart middleware. Coupled applications have the same problems, but adding  
the difficulties coming heterogeneous architectures on which we can deploy the 
different components of a coupled application. Multipoint communications on 
heterogenous system is a complete challenge. Finally, ensembles/workflows stress all 
of the above, plus the parallel file systems themselves.  This last pattern is the newest 
“usage pattern” and therefore the least well understood in performance terms.  
 
In CompBioMed applications, the computational patterns require different ways of 
addressing the bottlenecks, found at the supercomputer levels mentioned above. By 
profiling the applications, we are led to optimize the porting. This is done within 
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CompBioMed as well as in collaboration with other CoEs, including E-CAM and POP in 
particular.   

7.2 Software: the parallel programming models  

The different levels of the HPC software stack are designed to help applications exploit 
the resources of a supercomputer (i.e., operating system, compiler, runtime libraries, 
and job scheduler). We focus on the parallel programming models because they are 
close to the application and specifically on OpenMP and MPI because they are, at the 
moment, the standard de facto HPC environments.  
 
OpenMP (Open Multi-Processing): A parallel programming model that supports C, C++, 
and Fortran programming languages. It is based on compiler directives that are added 
to the code to enable shared memory parallelism. These directives are translated by the 
compiler supporting OpenMP into calls to the corresponding parallel runtime library. 
OpenMP is based on a fork-join model, meaning that just one thread will be executing 
the code until it reaches a parallel region; at this point, the additional threads will be 
created (fork) to compute in parallel and at the end of the parallel region all the threads 
will join. The communication in OpenMP between the different threads, is done through 
the shared memory. The user must annotate the different variables with the kind of data 
sharing they need (i.e., private, shared). OpenMP is a standard defined by a non-profit 
organisation: OpenMP Architecture Review Board (ARB). Based on this definition, 
different commercial or open source compilers and runtime libraries offer their own 
implementation of the standard.  
 
The loop parallelism in OpenMP had been the most popular in scientific applications. 
The main reason is that it fits perfectly the kind of code structure in these applications: 
loops. And this allows a very easy and straightforward parallelisation of the majority of 
codes.  
 
Since OpenMP 4.0, the standard also includes task parallelism, which offers a more 
flexible and powerful way of expressing parallelism. But these advantages have a cost: 
the ease of programming. Scientific programmers still have difficulties in expressing 
parallelism with tasks because they are used to seeing the code as a single flow with 
some parallel regions in it.  
 
MPI (Message Passing Interface): A parallel programming model based on an 
Application Programming Interface (API) for explicit communication. It can be used in 
distributed memory systems and shared memory environments. The standard is defined 
by the MPI Forum, and different implementations of this standard can be found. In the 
execution model of MPI, all the processes will run the main code (or function) in parallel. 
In general, MPI follows a so-called single program multiple data (SPMD) approach 
although it allows running different binaries under the same MPI environment (multi-
code coupling). In particular for the CompBioMed case, while most of its simulation 
software stack exploit hybrid MPI / OpenMP parallelisation, only BSC's Alya actively uses 
multi-code coupling on top of MPI / OpenMP parallelisation. HemeLB was a use case for 
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the new MPI-4 standard which for the first time handles clean 64-bit communication to 
alleviate the blocks arising from huge communication demands of the very large models 
one seeks to simulate today. [ref our J R Soc Interface Focus 2020 paper on HemeLB.] 

7.3 The Cloud Computing paradigm 

In the original CompBioMed proposal we mentioned the fact that academically run HPC 
systems invariably support diverse groups of many users and so are subject to resource 
contention issues. Although within research environments this lack of quality of service 
guarantee is an inconvenience, scientists are resigned to it and simply work around the 
problem in order to benefit from the ultimate goal of producing high-quality research 
papers which make use of and often depend on access to large-scale computing 
resources. However, in environments subject to hard deadlines (for example, when 
decision support is required for urgent clinical intervention) it becomes important to be 
able to immediately and reliably allocate appropriate resources sufficient to meet the 
goal. When the original CompBioMed proposal was written this certainly was an 
important aspect to explore, two years later cloud providers have become key players 
in both academic and non-academic environments for the provision of on-demand 
computing.  
 
There are many reasons for this, the following two being the most important for us: (a) 
containers are progressively more powerful, flexible and efficient, even when deployed 
on traditional HPC resources, and (b) at the same time that governmental 
supercomputing centres are selling core hours on their resources, commercial cloud 
providers offer "bare metal" instances improving their HPC capacities. It is worth 
remarking the importance of containers: they are reduced versions of an operating 
system with all associated software that a given application needs to run. They are 
therefore an extremely flexible way of deploying applications reliably, reproducibly, and 
rapidly, in heterogeneous cloud environments. For these reasons, we strongly believe 
that Cloud Computing is the real novel HPC architecture today.  
 
Cloud computing advances for biological systems and its importance as an HPC resource 
are described in [3], a work partially funded by CompBioMed. This makes the 
observation that in the last ten years, virtualisation technologies underwent significant 
enhancements to their accessibility and ease of use. Considering also the current great 
abundance of hardware resources, not only full-stack but also lightweight virtualisation 
(containers) are becoming ideal platforms on top of which users can build their own 
"cloud-based platforms".  
 
Operating-system-level virtualisation, also known as “containerisation”, is an 
increasingly popular strategy today. There are several challenges with this, among them: 
portability (which isolates an application and its dependencies), security (for safer use 
of containers), reproducibility (to reproduce results no matter where the container is 
deployed) and performance (to keep the container performant, reducing latencies and 
overheads). Due to CompBioMed’s focus on HPC-based applications, we started by 
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investigating two specific aspects: a container's performance and portability, leaving 
security and reproducibility for future research.  
 
HPC is by definition focusing on maximising performance while running a single well-
optimised parallel task. As such, having yet another software layer for handling 
containers that are stealing precious resources from our simulation is often seen by HPC 
scientists as a waste or an unnecessary complication. On the other hand, in data centres 
and HPC centres access and use is becoming progressively more complex, both from the 
software and from the hardware point of view, and these are strongly penalising 
portability. The software layers needed for operating a large production cluster require 
a slow, unique, error-prone, and often non-portable deployment effort. With the recent 
advances in emerging technologies (processing units, storage, network) the hardware 
also requires extra effort from system administrators and users. Thus, we have the 
request for absolute performance from pure HPC users, and on the other hand, we have 
the compromise of trading performance for an easier and more portable deployment of 
system software and applications. Additionally, it is obvious that all the modern general 
purpose supercomputers should allow that all applications running on them can expect 
to benefit from HPC. Therefore, such supercomputers to which we have access are never 
optimised for one kind of application only. This is even more the case now, with 
heterogeneous high-end architectures which are also used by people doing ML/AI in an 
embarrassingly parallel manner on hundreds to thousands of GPUs.  
 
Additionally, simulating biological systems is fundamentally a multi-scale / multi-physics 
problem [4]. Predictions of real world events, such as weather forecasting, when cement 
will set, the occurrence of an earthquake or what medical intervention to perform in 
order to save a person’s life, all require the bringing together of substantial quantities 
of data together with the performance of multi-dimensional simulations before the 
event in question occurs. Such forms of calculation are among the most demanding in 
computational science, as they need to be done rapidly, accurately, precisely and 
reliably. Moreover, they must include the quantification of the uncertainties associated 
with them. All these systems are multi-scale in nature, as their accuracy and reliability 
depend on the correct representation of processes taking place on several length and 
time scales. Only now, as we move toward the exascale era in high performance 
computing (HPC) can we expect to be able to tackle such problems effectively and, 
eventually, in a routine manner.  
 
In a multi-scale simulation, and considering the aforementioned monololithic, coupled 
and ensemble patterns, each relevant scale needs its own type of solver, which 
represents the scales own requirements derived from their respective focus of the 
associated physical model. Accordingly, a multi-scale model is no more than a collection 
of coupled single scale models (loosely defined based on the dominant physical 
properties that can be computed reliably with a dedicated, so-called “monolithic” 
solver). With this in mind, it is very reasonable to think that, instead of a very large 
hardware system to solve "all at once" in the largest possible monolithic algorithm, 
multi-scale / multi-physics problems will be solved by efficient coupling scales and 
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physics in a relatively controlled manner, which from the computational point of view 
involves the coupling of both codes and hardware systems. Each problem should be 
solved as efficiently as possible and coupling must be done avoiding bottlenecks due to 
algorithmic reasons or communication latency.  
 
In this context, containerisation appears to be a good option to allow rapid deployment 
in different parallel architectures, providing that efficiency is sustained. It is important 
to remark that containerisation is not at all an exclusively cloud-related topic, because 
in heteogeneous supercomputing systems it could also be an important weapon to 
somewhat smooth the heterogeneity. Therefore, CompBioMed should keep an eye on 
any type of container, from those which can offer HPC capabilities, such as Singularity, 
down to very popular containers which are useful for smaller applications, such as 
Docker. The reason is that both coupled and ensemble patterns will eventually need 
mixtures of large and small size parts. Although similar evaluations have already shown 
promising results for small benchmarks, we base our evaluation not on specific 
benchmarks but on a large production, biological, organ-level simulation involving 
hundreds of thousands of lines of code. CompBioMed therefore aims to assist both HPC 
developers, end users and HPC system administrators to make the best choice to find 
the optimal scenario regarding performance and portability for running a production 
scientific application using containers on different supercomputers. Thanks to the wide 
scope of our applications, we explore containerisation in several scenarios. At the 
molecular level, an example of their effective use can be found in the work of the 
CompBioMed consortium partner Acellera. Acellera's "In Silico Binding Analysis" service 
makes extensive use of Amazon's EC2 Cloud computing platform. The large quantity of 
computation required, coupled with the need to meet the pressing deadlines of 
customers would be uneconomic to undertake on in-house resources, or via outsourcing 
to a conventional HPC centre. At the other end lies Alya, the multi-physics code 
developed by BSC, which solves biomedical applications at the cell, tissue and organ 
level. In the discussion section, these and more examples will be presented, and in the 
following deliverable D2.4, we will include more examples, analysing the impact of our 
work.  

7.4 Exascale Computing 

We previously mentioned Moore's law. Moore’s law states that the number of 
transistors in a dense integrated circuit doubles approximately every two years. This law 
formulated in 1965 not only proved to be true, but it also translated into the doubling 
of the computing capacity of cores every 24 months. This was possible not only by 
increasing the number of transistors but also by increasing the frequency at which they 
worked. However, we can say that in the last few years the end of this paradigm seems 
to have arrived. The reason is that the performance of a single core is no longer 
increasing at the same pace. There are three main reasons for this:  
 
The memory wall: This refers to the gap in performance that exists between processor 
and memory (CPU speed improved at an annual rate of 55% up to 2000, while memory 
speed only improved at 10%). The main method for bridging the gap has been to use 
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caches between the processor and the main memory, increasing the sizes of these 
caches and adding more levels of caching. But memory bandwidth is still a problem that 
has not been solved.  
 
The instruction-level parallelism wall: Increasing the number of transistors in a chip as 
Moore’s law says is used in some cases to increase the number of functional units, 
allowing a higher level of instruction-level parallelism (ILP) because there are more 
specialised units or several units of the same kind (i.e., two floating point units that can 
process two floating point operations in parallel). However, finding enough parallelism 
in a single instruction stream to keep a high-performance single-core processor busy is 
becoming more and more complex. One of the techniques to overcome this has been 
hyper-threading. This involves making a single physical core presented as two (or more) 
to the operating system. Running two threads allows exploitation of instruction-level 
parallelism.  
 
The power wall: As we stated above, not only the number of transistors has been 
increasing but also their frequency. Yet there exists a technological limit to surface 
power density, and for this reason, clock frequency cannot scale up freely any more. Not 
only would the amount of power that must be supplied be unfeasible, but also the chip 
would not be able to dissipate the amount of heat generated. To address this issue, the 
trend is to develop simpler and specialised hardware and aggregate more of them (i.e., 
Xeon Phi, GPUs).  
 
Nevertheless, computer technologists are also focussed on making exascale machines, 
but they cannot rely on increasing the performance of a single core as they used to. The 
workaround is that the number of cores and accelerators per chip and per node has 
grown fast in the recent years, along with the number of nodes in a cluster. This is 
pushing research into more complex memory hierarchies and network topologies.  
 
Once exascale machines are available, the challenge is to have applications that can 
make efficient use of them by scaling to these levels. The increase in complexity of the 
hardware is a challenge for scientific application developers because their codes must 
run efficiently on more complex hardware and address a higher level of parallelism at 
both shared and distributed memory levels. This is where co-design is essential, and 
where we have invested time to adjust and update our codes to run efficiently on these 
future archetectures. Co-design implies a mutual effort of hardware developers, system 
integrators, and application developers to build future compute platforms together with 
performant software that runs on them. Being a domain-science centric CoE covering a 
broad range of applications, we see our main contribution on the software side. We will 
mainly address two aspects namely, support and guidelines for code adaptation and 
porting (software co-design) and performance modelling for future simulations that can 
be used for the design of new hardware and systems (hardware co-design). For both 
aspects, we need reliable data, which we obtain by setting up a scalable CompBioMed 
benchmark suite. It will cover the monolithic and coupled pre-exascale codes PALABOS, 
HemoCell, Alya, HemeLB as well as a set of MD codes such as GROMACS, NAMD, AMBER, 
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and OpenMM, which are all used by the pre-exascale workflow BAC. Note that, for BAC, 
we have already achieved ports of ESMACS and TIES onto GPUs and hybrid workflows 
that use RADICAL-Cybertools (RCT) on Summit to fully exploit all cycles available on such 
hybrid machines. Scalability in this respect implies that for each application we provide 
different size-consistent input sets targeting single nodes to tier-0 machines that show 
similar characteristics such as memory consumption, communication, etc. with respect 
to one node across all scales. 
 
At this point, only a global unified effort (hardware manufacturers, middleware and 
software developers, researchers, users, etc.) incorporating a co-design approach will 
enable exascale applications. Scientists in charge of HPC applications need to be able to 
trust in the parallel middleware and runtime libraries available to help them exploit the 
parallel resources. Additionally, completely new debugging and profiling tools must be 
designed and developed to cope with large-scale runs. The complexity and variety of the 
hardware no longer allows the manual tuning of the codes for each different 
architecture, requiring flexible programming languages and extensions. On this regard, 
a project like CompBioMed, partnered by stakeholders with all the possible viewpoints, 
is arguably the best forum to propose co-design strategies on all the aforementioned 
departments.  

7.5 Integration: the HPC-Cloud infrastructure 
 
At this point it is clear that a seamless integration of computing infrastructures of 
different sizes in a cloud environment is a must. Exascale and cloud computing are not 
isolated technologies. Since a few years ago, and in an almost exponential reaction, 
almost all cloud providers are including HPC instances among their available offers 
(notably Amazon AWS, Microsoft Azure, Oracle Cloud Infrastructure or Google Cloud). 
Moreover, since very recently all of them provide tools to integrate the cloud provider's 
infrastructures with on-premises' data centers to create a unified environment.  
 
Based on the pyramidal scheme of Figure 1, which describes the anatomy of a 
supercomputer, Figure 2 pictures HPC-Cloud integration. Pyramids of different sizes 
(from single nodes to exascale supercomputers) are combined with a cloud 
orchestration, to which the user gains access through a web-based frontend. This 
integration combines the best of both worlds in a highly democratised fashion, making 
computer power accessible to the largest possible number of researchers. It is worth 
remarking that by facing exascale and cloud computing challenges simultaneously, 
CompBioMed is providing a large corpus of scientific and technology research about the 
deployment of simulation applications on HPC-Cloud infrastructure.  
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Figure 2. The HPC-Cloud computing structure. 

 
Examples of HPC-Cloud integration can be found throughout the CompBioMed 
exemplars, as discussed in the Discussion section. 
 
One of the main exascale computing patterns is concerned with ensemble computing, 
one which is advocated by many of our sister CoE as their surefire route to exascale.It is 
also a widespread modus operandi on modern supercomputers which is required for 
performance of validation, verification and uncertainty quantification (VVUQ) and for 
building applications based out of workflows of increasing complexity. Applications such 
as the IMPECCABLE workflow for drug discovery cannot be run on cloud resources – it is 
a workflow, itself the integration of four separate complicaqted workflows, combining 
HPC with Machine Learning/Artificial Intelligence (ML/AI) methods. This is due to the 
speed at which we need/expect to obtain results and the data flow that is required to 
deliver them. An exascale machine which is optimised for such widespread usage 
patterns could well have different design features from ones which run extreme scale 
and coupled models. It will support the concurrent launching and execution of huge 
numbers of tasks (eventually up to millions), each task being potentially an MPI process 
itself. Today, many large supercomputers have hardwired limits to the maximum 
number of tasks that they can support, a direct legacy of the old model in which only 
monolithic applications were supported. Such complex workflow applications will put 
more stress on such a computer’s parallel file system and less on indicidual 
interconnects than those in the monolithic and coupled compute patterns. This in no 
way means that the parallel compute pattern is not an exascale class application; rather 
it means the nature of the architecture that optimises its performance would be 
somewhat different from that on which the other patterns are optimised.  
 
While the former is true in an academic environment, the advantages of cloud 
computing will be more relevant to commercial entities because the cost model and QoS 
issues are entirely different. Even in cases where one might claim that an application 
could be run on a cloud, it is not cost effective to any academic to do so. We do not have 
computer budgets comprised of real money and we get allocations on supercomputers, 
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not on clouds. That being said, there is a region in which the two modes overlap in order 
to allow certain applications, which may turn out to be ultimately destined in part for 
the cloud, to be developed initially on HPC architectures.  

Co-design: The (yet) unreached holy grail 

Before considering how to efficiently use the power available in future systems (mostly 
exascale machines, but others too), there are other, not so obvious considerations, that 
are of even larger relevance: will we be able to use it at all, even on a small scale? The 
core issue, therefore, is not if an application will be efficient but if it is even prepared to 
run on these future machines. For example, if exascale computers or cloud 
environments are made using an architecture in which the code can run. Preparations 
for exascale computing have led to the realization that future computing environments 
will be significantly different from those that provide petascale capabilities, not to 
mention High Performance Cloud. This change is driven by many issues, among them 
energy constraints, which are compelling architects to design systems that will require 
a significant re-thinking of the development and implementation of algorithms. Co-
design has been proposed as a methodology for scientific application, software and 
hardware communities to work together [5]. HPC performance has improved by three 
orders of magnitude almost every decade, a fact made possible by technology scaling 
and advances in the system design (hardware and software) following an evolutionary 
approach. Next generation hardware has been delivered to software developers who 
ported and optimized the software stack to the delivered hardware. However, future 
computing facilities will be different, and the entire system architecture will be vastly 
transformed, and thus to realize the performance goal, a revolutionary approach is 
required with strong software and hardware co-design strategy at its centre.  
 
According to Barret et al. [5] co-design considers the entire system stack from 
underlying technologies to applications (Figure 3). Applications provide insight into 
compute patterns and data movement patterns to optimize the system, the execution 
model implemented in the system software is tailored to provide services and manage 
resources, and the programming system hides the underlying hardware and provides 
programming productivity. From the bottom, technological issues and opportunities 
need to be comprehended, and in the middle, the system architecture effort need to 
devise the optimal system architecture considering top down requirements and bottom 
up issues and opportunities.  
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Figure 3. The co-design strategy, as stated in Barret et al. (see reference in the note) 

 
In CompBioMed we develop applications for users, we do not build computers. 
Therefore, to make this strategy work, we need a kind of "social contract" amongst the 
different players. While hardware manufacturers rarely include application developers 
in their staff, application development groups need to be closely connected to hardware 
manufacturers and/or have hardware expertise internally, i.e, to know how the 
underlying hardware responds to their algorithms. This gap is even larger if we consider 
simultaneously both exascale hardware manufacturers and application researchers. 
There have been (and are) many collaborative efforts to fill this gap, favouring co-design, 
but to make this happen effectively will need a sustained commitment from all 
stakeholders. Regarding HPC cloud, the situation is somewhat better, because cloud 
providers take the role of "manufacturers" as they deploy the cloud facilities according 
to user needs. Even so, things should be improved. So far, any HPC hardware 
architecture becomes imposed from the manufacturer, while the buyer and developers 
must make the best of the situation, with the highly esteemed help of middleware and 
programming tool developers to fill the gaps as best as possible.  
 
Even when conventional HPC system design involves a pipelined collaborative process 
that includes all the requirements throughout the design process, when it is delivered, 
4-6 years later, the rapid and disruptive changes anticipated in hardware design over 
the next decade necessitate a more systematic and agile development process. This 
process could be the hardware-software co-design processes developed for rapid 
product development in the embedded space. Design methodologies on which we have 
relied so far, never had to consider power constraints or parallelism of the scale being 
contemplated for exascale systems. Furthermore, the programming model and software 
environment for future extreme-scale systems is anticipated to be substantially 
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different from current practice. The designers of HPC hardware and software 
components have an urgent need for a systematic design methodology that reflects 
future design concerns and constraints.  
 
The co-design strategy is based on developing partnerships with computer vendors (and 
cloud providers) and application scientists and engaging them in a highly collaborative 
and iterative design process well before a given system is available for commercial use. 
The process is built around identifying leading edge, high-impact scientific applications 
and providing concrete optimization targets rather than focusing on speeds and feeds 
(FLOPs and bandwidth) and percent of peak. Rather than asking “what kind of scientific 
applications can run on an Exascale system” after it arrives, instead we need this 
application-driven design process to ask, “what kind of system should be built to meet 
the needs of the most important scientific problems.” This leverages deep 
understanding of specific application requirements and a broad-based computational 
science portfolio. Focusing on delivered scientific application performance in the design 
process is essential to define a common optimisation target that spans hardware and 
applications. Target application programs often consist of a million source lines of code 
involving multiple programming languages, third party library dependencies, and other 
complexities.  
 
The Centres of Excellence are a very good environment to help implement co-design 
practices. Centres like CompBioMed puts together high- and low-level expertise that can 
provide hardware vendors and cloud providers the required knowledge to foresee 
future needs, if not to steer their production efforts. In our centres, even if we cannot 
provide the bottom-up arrow of Figure 3, we can go deeply into analysing the top-down 
arrow approach, providing indications that help the manufacturers to bring their 
powerful tools closer to the developers' needs, especially in configuring the exascale 
arena in a way that all its potential can be exploited. A decisive weapon to steer co-
design is performance analysis tools, because they not only can help developers to 
improve software efficiency, but also, they can show manufacturers which problems we 
face that could be improved with architecture some changes. In the discussion section 
we provide several examples on the kind of information that such tools can provide.  
 
In the next section, we highlight the top-down strategy co-design areas. With this 
information to hand, it is our mission to establish deeper links with vendors and 
providers discussions of the future of HPC computing. The supercomputing centres 
partnering CompBioMed are in a privileged position to streamline these communication 
channels.  

8 Discussion 
In this section we will summarise the results so far attained by CompBioMed in porting 
applications to novel architectures and investigating the path to exascale computing. 
This joint effort will lead us to the final goal, the efficient use of HPC-Cloud computing 
resources. The results are grouped in sections devoted to each exemplar, with a final 
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section focused on the important issue of Input/Output (I/O) and data access through 
visualisation in the HPC era.  
 
Due to the variety of applications supported within CompBioMed, there cannot be one 
overriding metric to measure exascale performance. The compute pattern, expected 
outcome and application all need to be considered in order to determine the best 
measure for exascale potential. The indication of such metrics is an ogoing discussion 
between all CoEs and whilst this takes place we propose in the table below a list of 
metrics with their advantages and disadvantages: 
 
Table 1: List of metrics for determining exascale potential with advantages and disadvantages of 
each. 
Metric Type Advantages Disadvantages 

Cores Scale Simple measure of number 
of cores deployed 

• Assumes 
equivalence 
between CPUs and 
GPUs 

• Reflects poorly on 
GPU codes 

• HPC facilities have 
far fewer GPUs than 
CPUs 

Threads Scale Gives strong indication of 
total number of parallel 
processes utilised by a job 

• Assumes a GPU 
thread and a CPU 
core are equivalent 

• Reflects poorly on 
CPU codes 

Nodes Performance Simple measure of total 
nodes used by a job 

• Resources available 
on a node varies 
widely between HPC 
facilities 

• GPUs may not be 
available on all 
nodes 

• Job may not 
demand all 
resources of a node 

Resource 
% 

Scale Indicator of how much of a 
computer’s resources are 
being requested 

• HPC policies may 
limit the maximum 
resources that can 
be requested 

• Dependent on 
resource 
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distribution 
between nodes 

Wall time Performance Easiest measure to record • Geometry 
dependent measure 

Speed up Performance Straightforward measure to 
interpret performance 

• Derived unit from 
wall time or MLUPS 
of FLOPS 

MLUPS Performance Geometry independent • Measure that is 
most relevant to 
LBM codes 

Requested 
FLOPS 

Scale • Measures total 
available computer 
power 

• Allows direct 
comparison between 
GPUs and CPUs 

• Peak FLOPS of given 
resource is always a 
theoretical value, 
actual proportion of 
this utilised depends 
on hardware 
specific 
optimisations 

• Not a direct 
measure of parallel 
performance 

Load / 
Data 
balance 

Performance • Increases efficiency, 
especially in 
heterogeneous 
systems 

• Measures compact 
and "fair" use of the 
resources 

• Has a strong 
beneficial impact on 
energy consumption 

• Requires careful 
study of each 
software 
component, and 
how resources are 
used 

• Requires thorough 
knowledge of target 
code 

• Requires major 
effort in code re-
engineering, from 
algorithms to 
implementation 

• Geometry 
dependent measure 

 
Task start-
up time 

Performance Is relatively invariant to scale, 
i.e., is largely independent of 
the number or the length of 
the tasks 

• Dependent on the 
communications 
with resource 
managers and 
parallel 
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programming 
libraries  

Sustained 
number of 
tasks 

Performance Measures total number of 
tasks completed 

• HPC policies may 
limit the maximum 
resources to which 
tasks can be 
assigned 

• Dependent on the 
stability of hardware 

 

8.1 Cardiovascular Exemplar 

Cardiac fluid-structure interaction simulations in HPC-Cloud using containers (BSC) 

In [3], the authors present a summary of three container solutions to evaluate their 
feasibility for HPC environments using Alya as the simulation code: Docker, Singularity 
and Shifter, considering that containerization could be a fantastic solution to port codes 
to large-scale system. In particular, the information published can be studied by 
container developers to adapt their software to, on one hand, our codes and, on the 
other hand, to larger systems up to the exascale arena. Alya is an example of an HPC 
code that can take part in the three multiscale patterns, making it very appealing to do 
such analysis. 
 
From the analysis, we observe that Docker, the standard de-facto solution in cloud 
environments, presents some security and performance issues that make its adoption 
in HPC centers very unlikely, at least in its current state of development. On the other 
hand, Singularity is gaining attention in the HPC domain due to its performance, ease of 
use and integration with MPI and Slurm. The authors also looked at emerging solutions 
like Shifter, which seems to follow the trend of Singularity regarding its lightweight 
overhead but still has some issues concerning usability and portability to non-Cray 
systems. It is worth remarking that a deep analysis of applications containerisation can 
provide front line information for HPC cloud co-design because it is a clear way of 
highlighting our needs and steering their service provision. 
 
A performance comparison of the three container technologies, done on a cardiac 
mechanics fluid-structure simulation problem, has shown that Singularity and Shifter 
can provide close to bare-metal performance in up to 112 MPI ranks. Docker performs 
worse with degraded simulation performance due to communication overhead. This 
overhead can be explained by the network virtualisation inherent to the Docker 
approach.  
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Figure 4. Scalability plot of an Alya case running on bare metal and on Singularity containers on 

MareNostrum IV. "Bare metal" means no use of containers. "Singularity Generic" means that the 
container image does not hold any host-specific features. "Singularity Host" means that the container 

image leverages the host’s MPI high-performance network, with an integration of the container 
environment with the host MPI libraries. In this way, the container invokes the host’s MPI taking 

advantage of whatever specific configuration is available. Taken from [3]. 
 
In this paper [3], the authors also consider containers as a portability solution to mitigate 
the divergence of architectures. They used three clusters with three different 
architectures to evaluate the performance of their biological use case. Moreover, they 
quantified the trade-off between portability and performance when building Singularity 
images. It was demonstrated that it is possible to build a generic container that is 
independent of the software stack on the host. But it was also shown that the 
performance of such a generic container is far from that obtained in bare-metal 
executions. On the other hand, they found that a container image built with the 
performance libraries available in the host can achieve a performance comparable to 
the bare-metal one.  
 
In this light, the main conclusion is that, in the case of an HPC-based simulation code, it 
is possible to adapt the kind of containerisation to a wide range of scenarios, combining 
fast simulations with medium size and large-scale ones. In particular, the authors are 
interested in cloud deployment of our simulation code, Alya, which solves complex 
multi-physics / multi-scale problems, and in assessing its use within an HPC-Cloud 
environment. The goal is to use the code in the biomedical context running cell, tissue 
and organ level simulations of a given system (not only cardiovascular but also 
respiratory, etc.) in a simultaneous and combined way. As such, the authors are more 
interested in complex orchestrated sets of simulations of different computational cost 
than in a single and heroic large-scale run. While Docker allows a flexible solution for 
smaller simulations, Singularity provides great efficiency for larger ones. Combining the 
options in a smart way should provide a very well suited solution for cloud deployment 
of the kind of multi-scale / multi-physics problems we are attacking.  
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The paper presents scalability tests of a production biological simulation on up to 12,000 
cores of a tier-0 cluster using containers in an unprecedented manner for HPC 
containers. With this test, the authors expose that container technologies can scale at 
the same rate as bare-metal if we sacrifice portability.  
 
Since this was written in 2018, BSC has also worked on various optimisation aspects of 
the code, to ensure that it makes use of the latest supercomputing architectures, and is 
ready for the future architectures and potential exascale machines. Since its beginnings 
in 2004, Alya has scaled well in an increasing number of processors when solving single-
physics problems such as fluid mechanics, solid mechanics, acoustics, etc. Over time, we 
have made a concerted effort to maintain and improve scalability for multi-physics 
problems. This poses challenges on multiple fronts, including: numerical models, parallel 
implementation, physical coupling models, algorithms and solution schemes, meshing 
process, etc.  
 
Further details of scaling and the outlook for Alya can be found in the CompBioMed2 
deliverable D2.1. 

Cardiac fluid-electro-mechanical model of the heart for supercomputers and its application to 
clinical, pharmaceutical and medical devices sectors (BSC, Oxford, UPF) 

In this group of theses and papers [6–10], cardiac computational models, based either 
on BSC's Alya or Oxford's CHASTE, are used in an HPC context to simulate specific 
problems. In [6,7,10]a multi-physics / multi-scale fluid-electro-mechanical model of the 
human heart is presented, called the Alya Cardiac Computational Model (Alya CCM) and 
in [8,9] high definition simulations of electrophysiology including the torso are used to 
solve complex problems. This is an example of a coupled computing pattern, in which 
two or more large-scale parallel instances of the same code (Alya) are tightly coupled 
together. Moreover, together with another partner (UCL) we are studying the possibility 
of integrating this pattern with another large-scale code: HemeLB. Through these 
papers, the model shows its potential in biomedical research to become computational 
cardiac platforms, to study diseases, healing therapies and devices design and 
operation. In both models (especially Alya CCM) the tight coupling between the different 
structures and physics involved is fundamental to the problem solution, simulating 
cardiac function as a complex fluid-electro-mechanical system. 
 
This research line focuses on three aspects: the model’s physiological similarity, its 
computational complexity and its efficient implementation on supercomputers. Being a 
multi-scale / multi-physics system, coupling between electrophysiology, tissue 
mechanics and blood flow must be accurately yet efficiently modelled. The Alya based 
work also includes a 1D-3D coupling model to link the arterial network to the beating 
heart. This is currently being extended and improved in collaboration with UCL and 
Sheffield. 
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Figure 5. Parallel performance of the Alya Red cardiac model. Speed up and efficiency for the 

computational fluid dynamics (CFD, blood) and computational solid mechanics (CSM, mechanics and 
electrophysiology) on up to 5000 core counts with a 10 million nodes problem. Extracted from [7]. 

 
 

 
Figure 6. Fully-coupled fluid-electro-mechanical simulation of a heart. The sequence shows the systole 

process of a third degree atrio-ventricular block and the action of a trans-catheter intra-ventricular 
pacemaker (the small red cylinder close to the heart apex). In this disease, the initial electrical stimulus 

is not delivered to one of the ventricles, producing a strong heart malfunction. Tissue is coloured by 
electrical activity and blood shows the so-called Q-criterion, which depicts blood flow vortices evolution. 

Extracted from [7]. 
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Blood platelet aggregation simulations using data analysis (UNIGE) 

A powerful way to attack multi-scale simulations deployed in HPC-Cloud environments 
is with data analysis techniques of all kinds, including genetic algorithms, machine 
learning and artificial intelligence. In their most complex form, these techniques can 
combine high- and low-resolution simulations with experiments of all kinds, to obtain 
the correct input parameters, to assess sensitivities of inputs or to create surrogate 
predictive models. 
 
In [11] the authors introduce a model in which data analysis techniques are used to 
tackle the aggregation of blood platelets, which is part of the sequence of events leading 
to the formation of a thrombus (clot). The authors had previously developed a numerical 
model that quantitatively describes how platelets in a shear flow adhere and aggregate 
on a deposition surface [12]. Five parameters specify the deposition process and are 
relevant for a biomedical understanding of the phenomena. Experiments give 
observations, at five-time intervals, on the average size of the aggregation clusters, their 
number per mm2, the number of platelets and the ones activated per μl still in 
suspension. Then, by comparing in-vitro experiments with simulations, the model 
parameters can be manually tuned. Here, the authors use instead approximate Bayesian 
computation (ABC) to calibrate the parameters in a data-driven automatic manner. ABC 
requires a prior distribution for the parameters, which are taken to be uniform over a 
known range of plausible parameter values. As ABC requires the generation of many 
pseudo-data by expensive simulation runs, the authors have thus developed a high-
performance computing (HPC) ABC framework, taking into account accuracy and 
scalability. The present approach can be used to build a new generation of platelets 
functionality tests for patients, by combining in-vitro observation, mathematical 
modelling, Bayesian inference and high-performance computing, deployed in an HPC-
Cloud environment. In this example, while code optimisation was specially focused at 
the single node level, HPC-Cloud capabilities were put to a test, from deployment up to 
managing complex workflows for the optimisation process.  
 

 
Figure 7. The deposition surface of the Impact-R device after 300 seconds (left) and the corresponding 

results of the deposition in the mathematical model (right). Black dots represent the deposited platelets 
that are grouped in clusters. Extracted from [11].  
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Large-scale intracranial vasculature blood modelling for magnetic drug targeting (UCL, UvA, 
UNIGE)  

In [13], the authors tackle a multi-scale / multi-physics problem which addresses the 
issues arising as simulations approach the exascale range. The authors present an 
efficient computational model for simulating magnetic drug targeting in patient specific 
brain geometries, via the steering of paramagnetic nanoparticles with an external 
magnetic field. The model couples the dynamics of spherical particles to a lattice-
Boltzmann hydrodynamics simulation, taking into account body forces (e.g. gravity), 
diffusivity, and dipolar interactions. A study of the model's computational performance 
found favourable results, with a performance drop of ~15% (relative to a simulation of 
the hydrodynamics alone, i.e. in the absence of any particles) in the most extreme case 
of load imbalance (all particles clustered in one region).  
 
The code performance was assessed on up to 96,000 cores in EPCC's Archer 
supercomputer, a European system and on up to 250,000 cores on NCSA's Blue Waters, 
a US system, in another strong effort to push the limits to Exascale computing and CFD. 
In this regard, the authors report these two main issues and solutions: 
  

• The existing optimisation and profiling tools are generally inadequate at core 
counts over 30,000 and only SCALASCA from POP CoE – including their support 
– was sufficient to reach these scales effectively. 

• MPI-2 and -3, such as it is, still only use 32-bit communication and this is 
insufficient to manage the huge data movements on the machine when running 
at core counts of hundreds of thousands. HemeLB has become a “use case” for 
the MPI Forum and MPI-4 will be released in 2020 with clean 64-bit 
communications as a result. Work is now getting underway in support of this 
using BigMPI, planned for SuperMUC-NG.  

 
The authors demonstrated the use of the model to predict the particle density (as a 
function of time) near a target site for a specific patient cerebral vascular system and 
heart rate, using a single point dipolar magnet. Through multi-scale coupling with a 1D 
representation of the wider vascular system, we obtained inlet velocity profiles for a 
patient in a range of physiological states (varying heart rate, cardiac output and mean 
blood pressure). Initial results allow confidence in the viability of the model to answer a 
wide range of questions relating to the design and manipulation of iron oxide 
nanoparticles in a clinical context. Comparison to phantom flow results and medical 
imaging research will allow further tuning of system parameters to further increase the 
accuracy of the model. A next step toward using the simulation technique in a more 
realistic manner will involve coupling of the flow solver to a comprehensive 
electromagnetic simulation. This will allow for the investigation of particle behaviour 
when exposed to more complex magnetic fields created by a combination of multiple 
electromagnets. 
 
In this problem, the authors addressed the difficulties of coupling particle transport with 
continuum mechanics problems. Each of the two problems has its own parallelisation 
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paradigm, which when coupled together, can become antagonistic facing efficiency. This 
is a typical difficulty of multi-physics coupling. 
 

 
Figure 8. Volume rendering of the circle of Willis, constructed from an MRI scan of a human subject. The 
circle of Willis is the main blood distribution system in the brain, and is located roughly in the center of 

the head. Extracted from [9]. 
 
However, current effort is largely focussed on a new collaboration with a new associate 
partner, The Foundation for Research on Information Technologies in Society (IT'IS), to 
study blood flow in the entire human arterial tree, with eventual inclusion of the venous 
tree too. Efficient voxelization of the input meshes, memory optimization of HemeLB for 
a system of extreme sparsity, and development of load balancing schemes capable of 
scaling to 100k+ cores is necessary for such an endeavour, and we have made good 
progress on all fronts. This case is a very good example to help establish co-design ideas 
due to the different algorithms present, especially the coupled ones, and the different 
parallelisation schemes exposed. 
 
Since this deliverable was written in 2018, further work has been conducted on this task 
in collaboration with the POP CoE. The collaboration was able to demonstrate strong 
scaling up to >300k cores (full machine scale) on SuperMUC-NG. Strong scaling has also 
been shown in a self-coupled version up to 30k cores with full human venous and arterial 
geometries.   
 
In line with the upcoming pre-exascale machines expected at the end of 2021/beginning 
of 2022, a new version of HemeLB is in development that makes use of GPUs within the 
machines. This has been tested on Summit supercomputer and shown scaling of 90% up 
to 6144 GPU cores with continued strong scaling up to 18,432 cores. Given the early 
stages of this GPU-based codes, this shows an excellent outcome with the potential for 
further optimisation to come. 
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Porting and optimisation of a dense cellular suspensions flow application on novel and 
advanced microarchitecture Intel Skylake (BULL) 

In [7], the authors develop a method which simulates mechanical models for red blood 
cells and reproduces the emergent transport characteristics of complex cellular systems. 
The computational code, Hemocell (high pErformance MicrOscopic CELlular Library), 
models the flow of blood at the cellular level. Blood plasma is represented as a 
continuous fluid simulated with the Lattice Boltzmann Method (LBM) while the cells are 
represented as discrete element method (DEM) membranes coupled to the fluid by the 
immersed boundary method. 
 

 
Figure 9. Hemocell profile chart. Palabos performs CFD operations based on the lattice Boltzmann 

method (LBM). The HDF5 library is responsible for I/Os. 
 
BULL’s team performed the porting of the Hemocell HPC code on their computing 
platform. This platform offers several Intel Skylake nodes with the AVX-512 instruction 
set (i.e. 512 bits Advanced Vector Extensions). The first analysis of the application’s 
profile shows that the application is divided mainly into calls to the LBM solver Palabos 
and I/Os using the HDF5 library (Figure 8). Therefore, considering these ratios in Figure 
9, the LBM solver efficiency is responsible for the efficiency of the whole application. 
 

 
 

Figure 10. Hemocell communication and execution time ratio and top MPI functions (Intel ITAC, profiling 
tool). This analysis shows a code which does not exploit OpenMP parallelisation and suffers from large 

MPI wait time. 
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The communication and execution time ratio and the MPI communication tracing 
quickly identified the main issues (see Figure 10). The large MPI time is caused by 
imbalance in the workload which can be mitigated using load balancing techniques. 
 

 
Figure 11. Floating point unit (FPU) utilisation (Intel Application Performance Snapshot). On the left, 

Analysis of the FPU utilisation with standard strong optimisation flags. On the right, FPU utilisation with 
previous optimisation and strained vectorisation. 

 
The standard optimisation flags do not allow retrieval of the vectorisation capabilities of 
the CPU as shown in the left Figure 10. By forcing the vectorisation, the execution time 
of the application does not show any improvement. As said in the precedent section, 
the programmer must expose parallelisation at vectorisation level in order to make the 
compiler react. Therefore, and after this preliminary analysis, further investigations will 
be carried out, particularly on the data structure which very likely do not allow efficient 
vectorisation due to a non-unit stride (see Figure 11). 

 
Figure 12. Hemocell’s implementation of the data structure as Array of Structures (right). A Structure of 
Array (right) allows to get more efficiency from a computational point of view as it allows vectorisation. 

 
The conclusion is that good performance can only be ultimately obtained by efficient 
algorithm implementation. Although some optimisations are done by tuning compiler 
flags, greater speedups are obtained by choosing the proper implementation strategy 
and data structure. Considering that current and future microarchitecture shall exploit 
parallelism at all levels as described in the introduction of this document, it is necessary 
to take advantage of these features in the code implementations. Further research will 
be performed following these lines. Having studied and improved the application 
performance with a hardware vendor partnering CompBioMed (Atos-Bull) is certainly a 
very good way of pushing co-design.  
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Load balance strategies for multi-physics problems in large-scale blood flow simulations (UvA)  

The non-homogeneous distribution of computational costs is often challenging to 
handle in highly parallel applications, especially in multi-physics problems. In [14], the 
author studied the fractional load imbalance overhead in a high-performance biofluid 
simulation aiming to accurately resolve blood flow on a cellular level, using a 
methodology based on fractional overheads. In general, the concentration of particles 
in such a suspension flow is not homogeneous. Usually, there is a depletion of cells close 
to walls, and a higher concentration towards the centre of the flow domain, causing a 
time-dependent and potentially high computational work imbalance. We perform 
parallel simulations of such suspension flows. The emerging non-homogeneous cell 
distributions might lead to strong load imbalance, resulting in deterioration of the 
parallel performance. The authors formulate a model for the fractional load imbalance 
overhead, validate it by measuring this overhead in parallel lattice Boltzmann based cell-
based blood flow simulations, and compare the arising load imbalance with other 
sources of overhead, in particular the communication overhead. They find a good 
agreement between the measurements and our load imbalance model. We also find 
that in our test cases, the communication overhead was higher than the load imbalance 
overhead. However, for larger systems, we expect load imbalance overhead to be 
dominant. Thus, efficient load balancing strategies should be further developed.  
 

 
Figure 13. Haematocrit distribution for the channel flow case with different numbers of Red Blood Cells 

(N), average haematocrit H = 38%. ‘small’ (left), ‘intermediate’ (middle), and ‘large’ (right) systems. 
Extracted from [14]. 

 
Since the initial test cases, the communication overhead has been further investigated 
and optimisation work has been conducted on the code. A dynamic load-balancing 
mechanism has been employed which tracks the load-imbalance and if it exceeds a 
preset threshold, the simulation is checkpointed and restarted with a new 
decomposition that ensures homogenous load distribution. Whilst scaling is maintained 
at 25% over 8192 cores, further realistic cases are beginning which will result in a much 
larger scale study. 
 
In parallel to these efforts, evaluation of  a heterogeneous CPU-GPU version of the code 
has begun, where the cell mechanics (unstructured grid) are computed by the CPU, 
while the local fluid field (structured grid) computation is offloaded to node-local GPUs. 
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This is a necessary step to be able to exploit a larger part of the computational resources 
on emerging machines. While this development is in early stages yet, for a small realistic 
geometry we find an approximately factor 2 speed-up.    

Increasing MPI communication efficiency for the HemoCell codebase (UvA) 

For HemoCell, their developers have also looked into improving the efficiency of the 
communication between MPI processes. The communication of the cell material 
information between the processes was one of the major bottlenecks of the simulation, 
therefore, UvA researchers targeted this area by restructuring the communication 
pattern and restricting information exchange to data that is strictly necessary. Improving 
the efficiency in this context means that the communication structure needed to be 
altered, but not the resulting computation. A new step in the communication was added 
where instead of the fixed communication envelope a pre-compiled list of necessary 
information was used. This presents a minimal computational overhead that is 
counterweighted by the gain in reduced communication time.  
 
The results are shown in Figure 14. By reducing the amount of data communicated and 
improving on the algorithms and data structures used, we managed to get an overall 
improvement of approx. 100% in wall clock time, and in the strongest scaled case we 
get an improvement of 350%. Furthermore, the strong scaling properties are improved 
as well. In practical scenarios this roughly means that when simulating blood flow in 
microfluidic chip for 1 second, the computation time is reduced from 10 days to around 
3 days.  
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Figure 14. The top figure displays the performance of HemoCell before optimisation. The blue fluid bar 

encompasses communication as well as computation. The total time per iteration is written in black. The 
bottom figure displays the performance of HemoCell after the optimisation of the material 

communication. Both graphs are generated on different supercomputers top: SuperMUC, bottom: 
Marenostrum, therefore the difference between wall-clock times might not be due to optimisation, 

however, this should not affect the parallel efficiency numbers (green percentages). 
 

8.2 Molecularly-based Medicine Exemplar 

Machine learning and large-scale computing (UPF) 

CompBioMed directs its research to classical molecular dynamics (MD) simulations, 
which will be able to reach sampling in the second timescale within five years, producing 
petabytes of simulation data at current force field accuracy [15]. Notwithstanding this, 
MD will still be in the regime of low-throughput, high-latency predictions with average 
accuracy. In this paper, the authors envisage that machine learning (ML) will be able to 
solve both the accuracy and time-to-prediction problem by learning predictive models 
using expensive simulation data. On these grounds, such techniques can be considered 
as a post-process stage: the predictive model is built upon those expensive individual 
simulations. Apart from the research on the proper ML algorithms, the post-process 
stage presents more difficulties, such as Input / Output (I/O), storage and data analysis. 
The synergies between classical, quantum simulations and ML methods, such as artificial 
neural networks, have the potential to drastically reshape the way we make predictions 
in computational structural biology and drug discovery. This case also represents a 
potential for co-design of a different kind than the precedent ones, because it focuses 
on the efficiency of ML applications and MD.  



D2.3 Report on Extreme Scaling of and Porting of 
Exemplar Applications to Novel Architectures 

 

PU Page 36  Version 1.1 
 

“This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Grant Agreement No 675451“ 

 

 

 
Figure 15. Overview of a combined simulation and machine learning approach. a. MD data generation is 
expected to reach the second aggregated timescale by 2022 and an output files size of several petabytes 
by 2022 based on a trend of maximum aggregated time per paper per year using the ACEMD software. 
b. A first example of ML replacing QM to predict dihedral energies given a neural network trained with 
QM simulations. c. An example of data augmentation by MD: augment protein-ligand binding poses for 

a set of protein-ligand pairs with unknown binding mode; augment binding affinity data for a set of 
resolved protein-ligand complex structures of unknown affinities. Extracted from [15]. 

Web-based application to support the preparation of protein structures (UPF) 

Protein preparation is a critical step in molecular simulations that consists of refining a 
Protein Data Bank (PDB) structure by assigning titration states and optimising the 
hydrogen-bonding network. In [16], the authors describe ProteinPrepare, a web 
application designed to interactively support the preparation of protein structures. 
Users can upload a PDB file, choose the solvent pH value, and inspect the resulting 
protonated residues and hydrogen-bonding network within a 3D web interface. 
Protonation states are suggested automatically but can be manually changed using the 
visual aid of the hydrogen-bonding network. Tables and diagrams provide estimated pKa 
values and charge states, with visual indication for cases where review is required. The 
authors expect the graphical interface to be a useful instrument to assess the validity of 
the preparation, but nevertheless, a script to execute the preparation offline with the 
High-Throughput Molecular Dynamics (HTMD) environment is also provided for non-
interactive operations.  
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Figure 16. Main screen with the results of the preparation. Extracted from 11. 

 

Large-scale computing and binding affinity prediction of bromodomain inhibitors (UCL) 

As applications of computational chemistry in biomedicine become more established it 
is increasingly important that results are reproducible and that the level of certainty 
associated with them is well defined. With respect to the exascale, it is highly likely that, 
even for those applications exhibiting excellent strong scaling characteristics, the trade-
off between resolving time or physical length scales in the system will frequently render 
such simulations inefficient on enormous core counts when compared to the weak 
scaling case (the use of multiple, so called replica, runs). We therefore expect that the 
actual impact of exascale resources on future science applications will be to encourage 
the use of uncertainty quantification (techniques that often require multiple runs) in a 
field where researchers too often only run large simulations once [17,18]. 
 
In this context we have developed simulation protocols and workflow tools that derive 
both results and associated error bars from ensembles of replica simulations. Within our 
binding affinity calculator tool (BAC) we have automated two ensemble binding free 
energy calculation protocols; ESMACS (enhanced sampling of molecular dynamics 
with approximation of continuum solvent) and TIES (thermodynamic integration with 
enhanced sampling)[17]. ESMACS is a faster but more approximate method, whereas 
TIES employs a more exact yet more expensive methodology. Thus the two protocols 
are designed to work in combination as drug discovery workflows move from hit to lead 
to lead optimisation phases.  
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Figure 17. Bromodomain inhibitor I-BET726 and its binding mode in BRD4-BD1 as studied by Wan et al. 
[13]. Two views are displayed for the binding mode (PDB ID: 4BJX), in which I-BET726 is represented as 

stick in cyan/blue/red/green, the protein is shown as cartoon in silver, the crystallographic water 
molecules are shown as red balls, and clipped protein surfaces are shown in orange.  

 
The need to manage large campaigns of related simulations, where for example ESMACS 
rapidly rules out poor binders before TIES is employed when refining the best binders, 
has led us to enhance the simulation execution of BAC. To this end we have developed 
HTBAC [19], designed to manage complex workflows on multiple target HPC machines. 
Not only does this provide us with flexibility in terms of determining at run time which 
simulations should be continued based on their results (or the need to reduce 
uncertainty) but it allows us to design adaptive protocols that optimally use resources 
dependent on the sampling performance of individual simulations. Combining these two 
techniques with a range of computational kernels (BAC/HTBAC support the use of 
multiple MD engines, including those like ACEMD and OpenMM designed to fully exploit 
GPUs) will allow the efficient exploitation of the exascale to produce new scientific 
results with a greater level of robustness and reproducibility. 
 
Our automated workflow and middleware development have allowed us to run 
simulations on the entirety of the SuperMUC supercomputer (>250,000 cores) run by 
the Leibniz Rechenzentrum, LRZ, near Munich, Germany. More recently, we were 
presented with the HTBAC  the 2018 IEEE/ACM International Scalable Computing 
Challenge (SCALE) award [20] for our work in facilitating methods which allow 
automated trade-off between accuracy and computational cost. These developments 
are helping to prepare our protocols for the exascale an enable rigourous application of 
uncertainty quantification as we move towards the exascale. They have also facilitated 
our work using molecular dynamics simulations to machine learning techniques which 
has led to our award of a US DoE INCITE HPC leadership award, of 80 million core hours 
on the Titan supercomputer at the Oakridge National Laboatory in the US [21]. This 
application will help foresee the hardware needs of large-scale MD applications and help 
a better design of the future systems. 
 
Since this has been written, UCL have also been working in a complementary study 
(IMPECCABLE) in which they have coupled Machine Learning (ML) and Molecular 
Dynamics (MD) techniques to increase throughput for drug discovery in light of the 
Covid-19 pandemic. For this BAC was used to perform free energy calculations on a 



D2.3 Report on Extreme Scaling of and Porting of 
Exemplar Applications to Novel Architectures 

 

PU Page 39  Version 1.1 
 

“This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Grant Agreement No 675451“ 

 

variety of supercomputers including Leibniz Rechenzentrum’s SuperMUC-NG, Hartree 
Centre’s ScafellPike, Swiss National Supercomputing Centre’s PizDaint, the University of 
Edinburgh’s Advanced Computing Facility’ Archer, as well as other supercomputers 
worldwide. We also use RADICAL-Cybertools (RCT) middleware for flexible task-level 
parallelism [9], which allows us to submit multiple jobs to the batch system like a single 
large job and is thus easier to schedule.  BAC application uses an ensemble workflow, in 
which high-throughput “embarrassingly” parallel workloads are run on a wide range of 
node counts. The mean aggregated overhead of the middleware – RADICAL-Pilot (RP) – 
is typically below 5% of the execution time, making the scaling of the overall workflow 
very close to an ideal scaling (Figure 1). 
 

 
Figure 1. Performance of binding affinity calculator (BAC) on different HPC facilities. Using a 
single job submission with RCT middleware, the number of compounds evaluated by CG-ESMACS 
increases linearly with the number of nodes up to the entire machines (see Table 1). The ideal 
scalabilities are shown as the dashed lines. The performance in practice, however, is often limited 
by allocation policies enforced on HPC facilities, which do not permit routine jobs at very large 
scale. 
 

Computational Methods for Structure-Based Drug Discovery (Evotec, UCL) 

The approach employing large-scale computing and binding affinity calculation of 
bromodomain inhibitors using ESMACS and TIES is also being applied to G protein-
coupled receptors (GPCRs), the primary site of action of 60% of modern drugs and one 
of the most important and underexploited classes of current pharmacological targets 
[22]. A series of A2A adenosine receptor ligands for which kinetic binding data from 
existing radioligand binding experiments existed is used. The purpose of the present 
study is to assess the use of ESMACS and TIES for the accurate and reproducible 
prediction of binding free energies in ~50kDa membrane-bound receptors, as opposed 
to ~18kDa globular bromodomains, and to use the BAC software tool and associated 
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services to improve industrial structure-based design approaches for novel GPCR 
therapeutics. 

 
Figure 18. Top down view of the A2A receptor containing a) XAC, b) Theo, c) ZMA, d) NECA, e) UK, f) NGI 
in the binding pocket of the receptor. The coloring represents the ligand locations based on initial crystal 
structure (black), the cluster of the ligands’ poses after the first 4 ns of production (blue), and the more 

favored/adopted ones (red) after the 20 ns of production. The ΔG values represent the difference 
between the computed binding free energies, inclusive of entropy from ESMACS (𝜟𝑮𝑬𝑺𝑴𝑨𝑪𝑺) after the 

first 4 and last 4 ns of the production runs. 
 

8.3 Neuro-musculoskeletal Exemplar 

 
In the period covered by this report and due to the character of the problems this 
exemplar deals with, the CompBioMed partners involved were mostly focused more on 
complex workflows development, image processing and clinical assessment of the 
results. Therefore, there is nothing to report, for this period, specifically related to HPC-
Cloud computing. 

8.4 Input/Output and visualisation in the HPC era 

 
In the three CompBioMed exemplars, input, output and the way data is analysed are key 
issues. Molecular dynamics, 3D flow features, muscular fibre contraction, particle 
transport or bone structure, are clear examples of the difficulties and the power of 
visualisation once the problematic issues are solved. Elegant yet efficient solutions are 
required, always keeping in mind the large-scale sizes of the resulting datasets. In this 
section we summarise and discuss the different strategies we employ to tackle the 
visualisation problems of CompBioMed exemplars. Additionally, I/O and visualisation is 
a decisive arena for the hardware co-design, because CompBioMed applications are not 
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only greedy enough to provide a deep insight on the future system needs, but also 
because they expose a common requirement of large-scale applications.  
 
As discussed in [1], scientific visualisation focuses on the creation of images to provide 
important information about underlying data and processes. In recent decades, the 
unprecedented growth in computing and sensor performance has led to the ability to 
capture the physical world in unprecedented levels of detail and to model and simulate 
complex physical phenomena. Visualisation plays a decisive role in the extraction of 
knowledge from these data—as the mathematician Richard Hamming famously said, 
“The purpose of computing is insight, not numbers...” [23]. Visualisation supports 
improved understanding of large and complex data in two, three, or more dimensions 
from different applications. In the kind of problems we are dealing with, visualisation is 
of great importance, as simulation results are often best represented in the time-
dependent three-dimensional form we are familiar with.  
 
Traditionally, I/O and visualisation are closely related as, in most workflows, data used 
for visualisation are written to disk and then read by a separate visualisation tool. This 
is also called “post-mortem” visualisation, since the visualisation may be done after the 
simulations have finished. Other modes of interaction with visualisation are becoming 
more common, such as in situ visualisation (in which the simulation code directly 
produces visualisation images, using the same nodes and partitioning), or “in-transit” 
visualisation (in which the simulation code is coupled to a visualisation program, possibly 
running on other nodes and with a different partitioning scheme).  
 
Input/Output. Complex multi-physics, organ level simulations (cardiovascular, 
respiratory, etc.) writing files for post-mortem visualisation usually involve the highest 
volume of output. There are however other operations, especially explicit check-
pointing at restart, that require the writing and reading of large datasets. Logging or 
output of data subsets also requires I/O, often with a smaller volume but higher 
frequency.  
 
As these simulations can be quite costly, codes usually have a “checkpoint/restart” 
feature, allowing the code to output its state (whether converging for a steady 
computation or unsteady state reached for unsteady cases) to disk, for example, before 
running out of allocated computer time. This is called check pointing. The computation 
may be restarted from the state reached by reading the checkpoint from a previous run. 
This requires both writing and reading. Some codes use the same file format for 
visualisation output and check pointing, but this assumes data required are sufficiently 
similar and often that the code has a privileged output format. When restarting requires 
additional data (such as field values at locations not exactly matching those of the 
visualisation, or multiple time steps for smooth restart of higher order time schemes), 
code-specific formats are used.  
  
Parallel Input/Output. There are several ways of handling I/O for parallel codes. The 
simplest solution is to read or write a separate file for each MPI task. On some file 
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systems, this may be the fastest method, but it leads to the generation of many files on 
large systems, and requires external tools to reassemble data for visualisation, unless 
using libraries which can assemble data when reading it (such as VTK using its own 
format). Reassembling data for visualisation (or partitioning on disk) requires additional 
I/O, so it is best to avoid this if possible. Another approach is to use “shared” or “flat” 
files, which are read and written collectively by all tasks. MPI I/O provides functions for 
this (for example MPI_File_write_at_all using MPI), so the low-level aspects are quite 
simple, but the calling code must provide the logic by which data are transformed from 
a flat, partition- independent representation in the file to partition-dependent portions 
in memory. This approach provides the benefit of allowing check pointing and restarting 
on different numbers of nodes and making parallelism more transparent for the user, 
though it requires additional work for the developers. Parallel I/O features of libraries 
such as HDF5 and NetCFD seek to make this easier (and libraries build on them such as 
CGNS and MED can exploit those too).  
 
Performance of parallel I/O is often highly dependent on the combination of approach 
used by a code and the underlying file system. Even on machines with similar systems 
but different file system tuning parameters, performance may vary. In any case, for good 
performance on parallel file systems (typical of shared file systems on modern clusters), 
it is recommended to avoid funnelling all data through a single node except possibly as 
a fail-safe mode. In any case, keeping data fully distributed extending to the I/O level is 
a key to handling very large datasets, which do not fit in the memory of a single node.  
 
Visualisation pipeline. The “visualisation pipeline” is a common method for describing 
the visualisation process. When the pipeline is run through, an image is calculated from 
the data using the individual steps Filtering - Mapping - Rendering. The pipeline filter 
step includes raw data processing and image processing algorithm operations. The 
subsequent “mapping” generates geometric primitives from the pre-processed data 
together with additional visual attributes such as colour and transparency. Rendering 
uses computer graphics methods to generate the final image from the geometric 
primitives of the mapping process.  
 
Regardless of the dimensionality of the data fields, any visualisation of the whole three-
dimensional volume can easily flood the user with too much information, especially on 
a two-dimensional display or a piece of paper. Hence, one of the basic techniques in 
visualisation is the reduction/transformation of data. The most common technique is 
slicing the volume data with cut planes, which reduces three-dimensional data to two 
dimensions.  
 
Colour information is often mapped onto these cut planes using another basic well-
known technique called colour mapping. Colour mapping is a one-dimensional 
visualisation technique. It maps a scalar value to a colour specification. The scalar 
mapping is done by indexing into a colour reference table—the lookup table. The scalar 
values serve as indices in this lookup table including local transparency. A more general 
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form of the lookup table is the transfer function. A transfer function is any expression 
that maps scalars or multidimensional values to a colour specification.  
 
Colour mapping is not limited to 2D objects like cut planes, but it is also often used for 
3D objects like isosurfaces. Isosurfaces belong to the general visualisation technique of 
data fields, which we focus on in the following.  
 
Visualisation of scalar fields. Scalar fields are, for instance, pressure, temperature, 
electrical activation, ion concentration, etc. For the visualisation of three-dimensional 
scalar fields, there are two basic visualisation techniques: isosurface extraction and 
volume rendering.  

 
Figure 19. Visualisation of flame simulation results (left) using slicing and color mapping in the 

background, and isosurface extraction and volume rendering for the flame structure. Visualisation of an 
inspiratory flow in the human nasal cavity (right) using streamlines colored by the velocity magnitude.  

 
Isosurface extraction is a powerful tool for the investigation of volumetric scalar fields. 
An isosurface in a scalar volume is a surface in which the data value is constant, 
separating areas of higher and lower value. Given the physical or biological significance 
of the scalar data value, the position of an isosurface and its relationship to other 
adjacent isosurfaces can provide a sufficient structure of the scalar field.  
 
The second fundamental visualisation technique for scalar fields is volume rendering. 
Volume rendering is a method of rendering three-dimensional volumetric scalar data in 
two-dimensional images without the need to calculate intermediate geometries. The 
individual values in the dataset are made visible by selecting a transfer function that 
maps the data to optical properties such as colour and opacity. These are then projected 
and blended together to form an image. For a meaningful visualisation, the correct 
transfer function must be found that highlights interesting regions and characteristics of 
the data. Finding a good transfer function is crucial for creating an informative image. 
Multidimensional transfer functions enable more precise delimitation from the 
important to the unimportant. Therefore, they are widely used in volume rendering for 
medical imaging and the scientific visualisation of complex three- dimensional scalar 
fields. 
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Visualisation of vector fields. Vector fields are, for instance, velocity, displacement, 
acceleration, magnetic or electric fields, etc. The visualisation of vector field data is 
challenging because no existing natural representation can convey a visually large 
amount of three-dimensional directional information. Visualisation methods for three-
dimensional vector fields must therefore bring together the opposing goals of an 
informative and clear representation of a large number of directional information. The 
techniques relevant for the visual analysis of vector fields can be categorised as follows.  
 
The simplest representations of the discrete vector information are oriented glyphs. 
Glyphs are graphical symbols that range from simple arrows to complex graphical icons, 
directional information, and additional derived variables such as rotation. 
  
Streamlines provide a natural way to follow a vector dataset. With a user-selected 
starting position, the numerical integration results in a curve that can be made easily 
visible by continuously displaying the vector field. Streamlines can be calculated quickly 
and provide an intuitive representation of the local flow behaviour. Since streamlines 
are not able to fill space without visual disorder, the task of selecting a suitable set of 
starting points is crucial for effective visualisation. A limitation of flow visualisations 
based on streamlines concerns the difficult interpretation of the depth and relative 
position of the curves in a three-dimensional space. One solution is to create artificial 
light effects that accentuate the curvature and support the user in depth perception.  
 
Stream surfaces represent a significant improvement over individual streamlines for the 
exploration of three-dimensional vector fields, as they provide a better understanding 
of depth and spatial relationships. Conceptually, they correspond to the surface that is 
spanned by any starting curve, which is absorbed along the flow.  
 
Texture-based flow visualisation methods are unique means to address the limitations 
of representations based on a limited set of streamlines. They effectively convey the 
essential patterns of a vector field without lengthy interpretation of streamlines. Its 
main application is the visualisation of flow structures defined on a plane or a curved 
surface. The best known of these methods is the line integral convolution (LIC), which 
has inspired a number of other methods. In particular, improvements have been 
proposed, such as texture-based visualisation of time-dependent flows or flows defined 
via arbitrary surfaces. Some attempts were made to extend the method to three-
dimensional flows.  
 
Furthermore, vector fields can be visualised using topological approaches. Topological 
approaches have established themselves as a reference method for the characterisation 
and visualisation of flow structures. Topology offers an abstract representation of the 
current and its global structure, for example, sinks, sources, and saddle points. A 
prominent example is the Morse-Smale complex that is constructed based on the 
gradient of a given scalar field.  
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Visualisation of tensor fields. Tensor fields are, for instance, velocity gradients, 
deformation tensor, stress tensor in all its modalities (Cauchy, Piola-Kirchoff,...), etc. 
Compared to the visualisation of vector fields, the state of the art in the visualisation of 
tensor fields is less advanced. It is an active area of research. Simple techniques for 
tensor visualisation draw the three eigenvectors by colour, vectors, streamlines, or 
glyphs.  
 
In situ visualisation. According to the currently most common processing paradigm for 
analysing and visualising data on supercomputers, the simulation results are stored on 
the hard disk and reloaded and analysed/visualised after the simulation. However, with 
each generation of supercomputers, memory and CPU performance grows faster than 
the access and capacity of hard disks. As a result, I/O performance is continuously 
reduced compared to the rest of the supercomputer. This trend hinders the traditional 
processing paradigm.  
 
One solution is the coupling of simulations with real-time analysis/visualisation—called 
in situ visualisation. This technique necessarily starts before the data producer finishes. 
The key aspect of real-time processing is that data are used for visualisation/analysis 
while still in memory. This type of visualisation/analysis can extract and preserve 
important information from the simulation that would be lost as a result of aggressive 
data reduction.  
 
Various interfaces for the coupling of simulation and analysis tools have been developed 
in recent years, notably ParaView/Catalyst and VisIt/libSim. These interfaces allow a 
fixed coupling between the simulation and the visualisation and integrate large parts of 
the visualisation libraries into the program code of the simulation. Recent developments 
favour methods for loose coupling as tight coupling proves to be inflexible and 
susceptible to faults. Here, the simulation program and visualisation are independent 
applications that only exchange certain data among each other via clearly defined 
interfaces. This enables independent development of simulation code and 
visualisation/analysis code. It is worth mentioning that HemelB and Alya are already 
experimenting with in situ visualisation capabilities. 
 

9 Conclusion 
 
In this document we have focussed on two issues, which result in a combined strategy. 
On one hand, we reviewed the status of those codes from the CompBioMed software 
stack that are on the road to exascale computing. On the other hand, we looked at 
porting to architectures currently considered as “novel”, notably Cloud Computing 
especially focusing on its burgeoning HPC capabilities. As stated above, the former, 
exascale, is the present "novel" architecture and the latter, HPC-Cloud, is a future 
"novel" architecture. We strongly believe that the combined situation, HPC-Cloud 
environments will be ideal platform for Software-as-a-Service in the years to come. With 
the experience gained in CompBioMed we are in a privilege position to establish a fluent 
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dialogue with hardware vendors and cloud providers, helping that future facilities 
become closer (by conception) to the application needs.  
 
This report is a selected compilation of the research in this area by CompBioMed 
partners, in papers published or on the way to being published, related to the three 
research exemplars, with a special section devoted to Input-Output and Visualisation. 
 
It is worth mentioning that this report is complementary to D2.2 Report on 
Deployment of Deep Track Tools and Services to Improve Efficiency of Research and 
Facilitating Access to CoE Capabilities.   
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