
D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 1 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Grant agreement no. 675451

CompBioMed

Research and Innovation Action
H2020-EINFRA-2015-1

Topic: Centres of Excellence for Computing Applications

D2.3 Report on Extreme Scaling and Porting of
Exemplar Applications to Novel Architectures

Work Package: 2

Due date of deliverable: Month 27

Re-submission date: February 11, 2021

Start date of project: October 01, 2016 Duration: 36 months

Lead beneficiary for this deliverable: BSC
Contributors:

Disclaimer
This document’s contents are not intended to replace consultation of any applicable legal sources or the necessary
advice of a legal expert, where appropriate. All information in this document is provided “as is” and no guarantee or
warranty is given that the information is fit for any particular purpose. The user, therefore, uses the information at
its sole risk and liability. For the avoidance of all doubts, the European Commission has no liability in respect of this
document, which is merely representing the authors’ view.

Project co-funded by the European Commission within the H2020 Programme (2014-2020)

Dissemination Level
PU Public YES
CO Confidential, only for members of the consortium (including the Commission Services)

CI Classified, as referred to in Commission Decision 2001/844/EC

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 2 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Table of Contents

1 Version Log .. 3
2 Contributors ... 3
3 Acronyms and Definitions .. 4
4 Executive Summary .. 6
5 Introduction ... 6
6 HPC systems: those novel today, those novel tomorrow .. 8

6.1 Hardware: the supercomputer architecture .. 9
6.2 Software: the parallel programming models ... 12
6.3 Cloud Computing: the novel HPC architecture today 13
6.4 Exascale Computing: the novel HPC architecture tomorrow 15
6.5 Integration: the HPC-Cloud infrastructure ... 17

Co-design: The (yet) unreached holy grail ... 19
7 Discussion .. 21

7.1 Cardiovascular Exemplar .. 24
Cardiac fluid-structure interaction simulations in HPC-Cloud using containers
(BSC) ... 24
Cardiac fluid-electro-mechanical model of the heart for supercomputers and its
application to clinical, pharmaceutical and medical devices sectors (BSC, Oxford,
UPF) .. 26
Blood platelet aggregation simulations using data analysis (UNIGE) 28
Large-scale intracranial vasculature blood modelling for magnetic drug targeting
(UCL, UvA, UNIGE) .. 29
Porting and optimisation of a dense cellular suspensions flow application on novel
and advanced microarchitecture Intel Skylake (BULL) ... 31
Load balance strategies for multi-physics problems in large-scale blood flow
simulations (UvA) ... 33
Increasing MPI communication efficiency for the HemoCell codebase (UvA) 34

7.2 Molecularly-based Medicine Exemplar .. 35
Machine learning and large-scale computing (UPF) .. 35
Web-based application to support the preparation of protein structures (UPF) .. 36
Large-scale computing and binding affinity prediction of bromodomain inhibitors
(UCL) .. 37
Computational Methods for Structure-Based Drug Discovery (Evotec, UCL) 39

7.3 Neuro-musculoskeletal Exemplar .. 40
7.4 Input/Output and visualisation in the HPC era .. 40

8 Conclusion .. 45
9 References ... 47

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 3 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

1 Version Log

Version Date Released by Nature of Change

V0.1 02/11/2018 Mariano Vázquez Draft of template

V0.2 13/11/2018 Mariano Vázquez Draft, final version almost
complete

V1.0 21/12/2018 Emily Lumley Final release version

V1.1 23/07/2020 Emily Lumley Update after final review
recommendations

V2.0 11/02/2021 Emily Lumley Update after 9-month review of
CompBioMed2

2 Contributors

Name Institution Role

Mariano Vázquez BSC Principal Author

Okba Hamitou Bull Co-author

Gabor Zavodszky UvA Co-author

Peter Coveney UCL Co-author

Alfons Hoekstra UvA Co-author

Bastien Chopard UNIGE Co-author

Jonas Latt UNIGE Co-author

Alfonso Santiago BSC Co-author

Gavin Pringle UEDIN Co-author

Adriá Pérez UPF Co-author

Andrea Townsend-Nicholson UCL Co-author

David Wright UCL Co-author

Andrew Narracott USFD Reviewer

Terry Sloan USFD Reviewer

Peter Coveney UCL Reviewer

Emily Lumley UCL Reviewer

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 4 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

3 Acronyms and Definitions

Acronyms Definitions

ABC Approximate Bayesian Computations

ACEMD Molecular Dynamics software from Acellera

AlyaCCM Alya Cardiac Computational Model

API Application Progressing Interface

ARP Architecture Review Board

AVX Advanced Vector Extension

BAC Binding Affinity Calculator

CFD Computational Fluid Dynamics

CGNS CFD General Notation System

CHASTE Cancer, Heart and Soft Tissue Environment

CoE Centre of Excellence

CPU Central processing unit

CUDA Compute Unified Device Architecture

DEM Discrete Element Method

ESMACS Enhanced Sampling of Molecular Dynamics with Approximation of
Continuum Solvent

GB Gigabyte

GPCR G-protein coupled receptor

GPU Graphics processing unit

HDF5 Hierarchical Data Format 5

HemoCell High PErformance MicrOscopic CeLlular Library

HPC High Performance Computing

HTBAC High-Throughput Binding Affinity Calculator

HTMD High-Throughput Molecular Dynamics

I/O Input / Output

ILP Instruction-level parallelism

IPC Instruction per cycle

KPI Key Performance Indicator

LBM Lattice Boltzmann Method

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 5 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

LIC Line Integral Convolution

MD Molecular Dynamics

ML Machine Learning

MPI Message Passing Interface

NetCFD Ninf computational component for CFD

NUMA Non-uniform Memory Access

OpenCL Open Computing Language

OpenMM A high performance toolkit for molecular simulation

OpenMP Open Multi-processing

PDB Protein Data Bank

RAM Random access memory

SIMD Single Instruction Multiple Data

SPMD Single Programme Multiple Data

SRAM Static random access memory

TIES Thermodynamic Integration with Enhanced Sampling

UMA Uniform Memory Access

WP Work Package

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 6 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

4 Executive Summary

This report is complementary to D2.2 Report on Deployment of Deep Track Tools and
Services to Improve Efficiency of Research and Facilitating Access to CoE Capabilities.

In this document we focus on two issues which result in a combined strategy. On one
hand, we look at the current status of those codes from the CompBioMed software stack
which are on the road to exascale computing. The CompBioMed software stack is
diverse in nature with three specific compute patterns (described below) which are
relevant to the code base making the performance and co-design activities related to it
equally diverse. On the other hand, we consider the porting to current architectures
which are considered as "novel", notably the strongly emergent Cloud Computing model
with particular focus on its innovations with respect to HPC capabilities. As we describe
in the present document, addressing both issues concurrently results in improving what
is becoming a powerful combined solution: HPC-Cloud computing. Whilst we recognise
that cloud computing has its advantages, this is just another tool in the goal of expanding
our codes to run on future exascale machines. This report is a selected compilation of
the research done in this area by CompBioMed partners, in papers published or on the
way to being published.

5 Introduction

Until relatively recent times, a large majority of those researchers who strongly rely for
their investigations on computational tools were confident that Moore's law would let
them obtain progressively better results simply by awaiting a new generation of
hardware. Since the 1970's, Moore's law established that computing power should
roughly speaking double every two years. Therefore, one could reasonably expect that
the same code compiled in a new architecture every two years should run twice as fast
as the previous one, providing that its software design does not change that much
(neither improving nor impairing its performance). However, as supercomputers
became more accessible, a much more powerful "law" appeared to boost research by
orders of magnitude beyond Moore's Law: parallelism. Computer parallelism allows
tasks to be performed at the same time—concurrently—by distributing work, data or
both. This potential can be thoroughly exploited if and only if (a) both hardware and
software is parallelisation compliant and (b) software design maps to hardware
architecture. It is also true that innovaitons in software based on new ideas and methods
can accelerate performance dramatically and in a way not directly related to Moore’s
law and hardware related acceleration. This is rendered more complex as hardware
vendors are continuously evolving their products, resulting from time to time in
substantial changes of paradigm. Keeping pace with such computer changes is a
significant challenge.

Biomedical research is particularly sensitive to computational tools and their efficiency
on large systems because, quoting PRACE experts [1], "Life science is one of the fastest-

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 7 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

growing users of high-performance computing both in Europe and worldwide, with a
wide range of uses from chemistry, bioinformatics, and structural biology to diagnosis
and treatments in clinical settings." However for several reasons, biomedical systems
are challenging to simulate. Simulating the human body requires complex
computational models that, to be accurate, require very fine space and time
discretisation. The models are usually non-linear, increasing the need for sophisticated
solver strategies, which are always computationally expensive. Compounding this, space
and time scales range extremely widely in these systems, each scale being solved using
a different model, substantially increasing the complexity through the strong multi-scale
and multi-physics character of such problems. In order to deliver results which can be
used in clinical contexts, we need to develop and deploy actionable codes – ones that
produce accurate and precise predictions of clinically relevant scenarios ahead of
interventions being performed by clinicians. To receive regulatory approval for such
applications, the codes must be certified in terms of VVUQ – please spell this out. All this
requires ultra-high end HPC.

Mapping efficiently the complex software arising from such modelling to the HPC
hardware is one mission of CompBioMed which enables us to put it in the hands of the
users who require it, as an equally important mission of the CoE. This document
describes the efforts made so far in CompBioMed to analyse the porting and
deployment of the project's software stack on what is currently considered "novel"
architectures (among them notably HPC-based Cloud Computing) and, on future
predictions of HPC hardware, i.e., the exascale computing systems.

6 CompBioMed High Performance Compute Patterns

In [REF: Multiscale Computing for science and engineering in the era of Exascale
performance, Hoekstra et al., Phil Trans A, 2019] the authors define a taxonomy for
multiscale modelling applications and HPC based on computing patterns. In this
document and inspired by those ideas, we extend them to general applications (not only
multiscale). The proposed CompBioMed three key patterns are:

1. Monolithic – Deployment of a single computational job spread over a large
number of compute resources, including workflows necessary to manage such
large computational jobs

2. Coupled – Deployment of multiple, communicating subcomponents each
assigned to a sub-section of compute resources. In an heterogenous system,
each sub-section can be of different architecture. The application
subcomponents can be different codes or different instances of the same code.

3. Ensemble – Multiple instances of an application launched in parallel with
different input data; each such instance may be a monolithic parallel code, itself
running at extreme scale. These are now becoming part of highly complex data
intensive workflows combining conventional HPC applications with machine
learning and/or AI components, as well as for validation, verification and
uncertainty quantification.

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 8 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

This categorisation is not unique to CompBioMed, it is recognized widely in the HPC
community as key “usage patterns”. It is worth mentioning that the Ensemble pattern is
sometimes considered as two separate class: ensemble and complex workflows. In this
document we discuss it as a single class. These patterns represent significant differences
in the deployment strategy that should be taken into account when assessing scaling
and performance as part of exascale readiness.

In CompBioMed, and inheriting the characteristics of the computational medicine
domain, we have applications falling under the three aforementioned patterns.

7 HPC systems: those novel today, those novel tomorrow

HPC systems are becoming more and more complex and the hardware is exposing
massive parallelism at all levels, with their own needs depending on the computational
pattern, as described below. Exploiting these resources is a huge challenge. In order for
the reader to understand the concepts in the following sections, we first explain briefly
and in layman's terms the different levels of parallelism available on a supercomputer.
We do not aim to give a full description of the state of the art of the different
architectures available in supercomputers, but a general overview of the most common
approaches and concepts. This follows the ideas introduced in [2], whose authors belong
to the CompBioMed consortium. We firstly describe hardware and then software.

Figure 1. Anatomy of a supercomputer. Memory latency and size (left) and parallelism (right) to exploit

the different levels of hardware (middle). Extracted from [1].

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 9 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

7.1 Hardware: the supercomputer architecture

Figure 1 shows the different levels of hardware in a supercomputer together with the
associated memory latency and size, as well as the type of parallelism to exploit them.
The numbers are expressed in terms of orders of magnitude and provide a general idea,
as they are system dependent.

These levels are the following:

Core/Central Processing Unit (CPU): We could consider a core as the first unit of
computation, as a core is able to decode instructions and execute them. Here, within
the core, we find the first and lowest level of parallelism: instruction-level parallelism.
This parallelism is offered by so-called superscalar processors, and its main characteristic
is that they can execute more than one instruction during a clock cycle. There are several
developments that allow instruction-level parallelism such as pipelining, out-of-order
execution, or multiple execution units. These techniques allow more than one
instruction per cycle (IPC). The exploitation of this parallelism relies mainly on the
compiler and on the hardware unit itself. Reordering of instructions, branch prediction,
renaming or memory access optimisation are some of the techniques that help to
achieve a high level of instruction parallelism.

At this level, complementary to instruction-level parallelism, we can find data-level
parallelism offered by vectorisation. Vectorisation allows the application of the same
operation to multiple pieces of data via a single instruction. Nowadays almost every
processor in the market provides some kind of vectorisation through SIMD registers and
compilers allow exploiting these features. For instance, MareNostrum's processors
allow 32-byte (AVX2) and 64-byte (IMCI/AVX-512) SIMD registers in its different
partitions. It is worth mentioning that the programmer is responsible for exposing this
parallelisation level, requiring coding good practices. Otherwise, the compiler does not
identify data level parallelism. The performance obtained from this is highly dependent
upon the type of code being executed. Scientific applications or numerical simulations
can often benefit from vectorisation as the computation they must perform usually
consists of applying the same operation to large pieces of independent data.

Socket/Chip: Coupling of several cores in the same integrated circuit is a common
approach and is usually referred to as multicore or many-core processors (depending on
the amount of cores it aggregates). One of the main advantages is that the different
cores share some levels of cache memory. The cache memory is a static random
access memory (SRAM), which the chip can access faster than regular random
access memory (RAM). The shared caches can improve the reuse of data by different
threads running on cores in the same socket, with the added advantage of the cores
being close on the same die (higher clock rates, less signal degradation, less power).

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 10 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Having several cores in the same socket allows thread-level parallelism, as each different
core can run a different sequence of instructions in parallel whilst having access to the
same data.

These two deepest levels, "Core/CPU" and "Socket/Chip" are and will be definitely
present in any future architecture, being the deepest layers at which a programmer can
have control. Therefore, the three patterns should devote equal optimization effort
here: in the three cases data and process ordering will be very influential on, for
instance, memory access and vectorization.

Accelerators/GPUs: Accelerators are specialised hardware that consist of hundreds of
simpler computing units that can work in parallel to solve specific calculations over large
pieces of data. They include their own memory.

Accelerators need a central processing unit (CPU) to process the main code and off-load
the specific kernels to them. To exploit the massive parallelism available within the
GPUs, the application kernels must be rewritten. The dominant programming language
is OpenCL (Open Computing Language) that is cross-platform, while other alternatives
are vendor dependent, such as nVIDIA's Compute Unified Device
Architecture programming language, widely known as CUDA.

In monolithic patterns, codes can run either completely on the accelerators or offloading
part of them (for instance the solver) to the accelerator while the other part runs in the
host. Both situations represent different challenges, and in the second one
host/accelerator data transfer becomes critical. Data transfer is also critical in
heterogeneous coupled patterns.

Node: A computational node can include one or several sockets and accelerators along
with main memory and Input/Output. A computational node is, therefore, the minimum
autonomous computation unit as it includes cores to compute, memory to store data,
and a network interface to communicate. The main classification of shared memory
nodes is based on the kind of memory access they have: uniform memory access (UMA)
or non-uniform memory access (NUMA). In UMA systems, the memory system is
common to all the processors and this means that there is just one memory controller
that can only serve one request at a time; when several cores are issuing memory
requests, this becomes a bottleneck. On the other hand, NUMA nodes partition the
memory among the different processors; although the main memory is seen as a whole,
the access time depends on the memory location relative to the processor issuing the
request.

Within the node, thread-level parallelism can also be exploited as the memory is shared
among the different cores inside the node.

This level is very important specially for monolithical applications or coupled ones in
which of the components is a monolithical one.

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 11 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Cluster/Supercomputer: A supercomputer is an aggregation of nodes connected
through a high-speed network with a specialised topology. We can find different
network topologies (i.e., how the nodes are connected), such as a 2D or 3D torus or
hypercube. The kind of network topology will determine the number of hops that a
message will need to reach its destination or communication bottlenecks. A
supercomputer usually includes a distributed file system to offer a unified view of the
cluster from the user point of view.

The parallelism that can be used at the supercomputer level is a distributed memory
approach. In this case, different processes can run in different nodes of the cluster and
communicate through the interconnect network when necessary.

We have seen all the computational elements that form a supercomputer from a
hierarchical point of view. All the levels explained above also include different levels of
storage that are organised in a hierarchy too. Starting from the core, we can find the
registers where the operands of the instructions that will be executed are stored.
Usually included also in the core or CPU, we can find the first level of cache. This is the
smallest and fastest one; it is common that it is divided into two parts: one to store
instructions (L1i) and another to store data (L1d). The second level of cache (L2) is bigger,
still fast, and placed close to the core too. A common configuration is that the third level
of cache (L3) is shared at the socket and L1 and L2 are private to the core, but any
combination is possible.

The main memory can be of several gigabytes (GB) and much slower than the caches. It
is shared among the different processors of the node, but as we have explained before
it can have a non-uniform memory access (NUMA), meaning that it is divided in pieces
among the different sockets. At the supercomputer level, we find the disk that can store
petabytes of data. For instance BSC's MareNostrum IV has a total capacity of 24.6
petabytes, EPCC's Archer 4.4 petabytes and SURFsara's Cartessius 7.7 petabytes.

At this level, the three patterns reveal all their complexity and variety. Monolithic
applications stress the OpenMP/MPI interconnects in a relatively uniform way, with
eventually load balance problems which can be addressed with careful programming
and/or smart middleware. Coupled applications have the same problems, but adding
the difficulties coming heterogeneous architectures on which we can deploy the
different components of a coupled application. Multipoint communications on
heterogenous system is a complete challenge. Finally, ensembles/workflows stress all
of the above, plus the parallel file systems themselves. This last pattern is the newest
“usage pattern” and therefore the least well understood in performance terms.

In CompBioMed applications, the computational patterns require different ways of
addressing the bottlenecks, found at the supercomputer levels mentioned above. By
profiling the applications, we are led to optimize the porting. This is done within

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 12 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

CompBioMed as well as in collaboration with other CoEs, including E-CAM and POP in
particular.

7.2 Software: the parallel programming models

The different levels of the HPC software stack are designed to help applications exploit
the resources of a supercomputer (i.e., operating system, compiler, runtime libraries,
and job scheduler). We focus on the parallel programming models because they are
close to the application and specifically on OpenMP and MPI because they are, at the
moment, the standard de facto HPC environments.

OpenMP (Open Multi-Processing): A parallel programming model that supports C, C++,
and Fortran programming languages. It is based on compiler directives that are added
to the code to enable shared memory parallelism. These directives are translated by the
compiler supporting OpenMP into calls to the corresponding parallel runtime library.
OpenMP is based on a fork-join model, meaning that just one thread will be executing
the code until it reaches a parallel region; at this point, the additional threads will be
created (fork) to compute in parallel and at the end of the parallel region all the threads
will join. The communication in OpenMP between the different threads, is done through
the shared memory. The user must annotate the different variables with the kind of data
sharing they need (i.e., private, shared). OpenMP is a standard defined by a non-profit
organisation: OpenMP Architecture Review Board (ARB). Based on this definition,
different commercial or open source compilers and runtime libraries offer their own
implementation of the standard.

The loop parallelism in OpenMP had been the most popular in scientific applications.
The main reason is that it fits perfectly the kind of code structure in these applications:
loops. And this allows a very easy and straightforward parallelisation of the majority of
codes.

Since OpenMP 4.0, the standard also includes task parallelism, which offers a more
flexible and powerful way of expressing parallelism. But these advantages have a cost:
the ease of programming. Scientific programmers still have difficulties in expressing
parallelism with tasks because they are used to seeing the code as a single flow with
some parallel regions in it.

MPI (Message Passing Interface): A parallel programming model based on an
Application Programming Interface (API) for explicit communication. It can be used in
distributed memory systems and shared memory environments. The standard is defined
by the MPI Forum, and different implementations of this standard can be found. In the
execution model of MPI, all the processes will run the main code (or function) in parallel.
In general, MPI follows a so-called single program multiple data (SPMD) approach
although it allows running different binaries under the same MPI environment (multi-
code coupling). In particular for the CompBioMed case, while most of its simulation
software stack exploit hybrid MPI / OpenMP parallelisation, only BSC's Alya actively uses
multi-code coupling on top of MPI / OpenMP parallelisation. HemeLB was a use case for

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 13 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

the new MPI-4 standard which for the first time handles clean 64-bit communication to
alleviate the blocks arising from huge communication demands of the very large models
one seeks to simulate today. [ref our J R Soc Interface Focus 2020 paper on HemeLB.]

7.3 The Cloud Computing paradigm

In the original CompBioMed proposal we mentioned the fact that academically run HPC
systems invariably support diverse groups of many users and so are subject to resource
contention issues. Although within research environments this lack of quality of service
guarantee is an inconvenience, scientists are resigned to it and simply work around the
problem in order to benefit from the ultimate goal of producing high-quality research
papers which make use of and often depend on access to large-scale computing
resources. However, in environments subject to hard deadlines (for example, when
decision support is required for urgent clinical intervention) it becomes important to be
able to immediately and reliably allocate appropriate resources sufficient to meet the
goal. When the original CompBioMed proposal was written this certainly was an
important aspect to explore, two years later cloud providers have become key players
in both academic and non-academic environments for the provision of on-demand
computing.

There are many reasons for this, the following two being the most important for us: (a)
containers are progressively more powerful, flexible and efficient, even when deployed
on traditional HPC resources, and (b) at the same time that governmental
supercomputing centres are selling core hours on their resources, commercial cloud
providers offer "bare metal" instances improving their HPC capacities. It is worth
remarking the importance of containers: they are reduced versions of an operating
system with all associated software that a given application needs to run. They are
therefore an extremely flexible way of deploying applications reliably, reproducibly, and
rapidly, in heterogeneous cloud environments. For these reasons, we strongly believe
that Cloud Computing is the real novel HPC architecture today.

Cloud computing advances for biological systems and its importance as an HPC resource
are described in [3], a work partially funded by CompBioMed. This makes the
observation that in the last ten years, virtualisation technologies underwent significant
enhancements to their accessibility and ease of use. Considering also the current great
abundance of hardware resources, not only full-stack but also lightweight virtualisation
(containers) are becoming ideal platforms on top of which users can build their own
"cloud-based platforms".

Operating-system-level virtualisation, also known as “containerisation”, is an
increasingly popular strategy today. There are several challenges with this, among them:
portability (which isolates an application and its dependencies), security (for safer use
of containers), reproducibility (to reproduce results no matter where the container is
deployed) and performance (to keep the container performant, reducing latencies and
overheads). Due to CompBioMed’s focus on HPC-based applications, we started by

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 14 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

investigating two specific aspects: a container's performance and portability, leaving
security and reproducibility for future research.

HPC is by definition focusing on maximising performance while running a single well-
optimised parallel task. As such, having yet another software layer for handling
containers that are stealing precious resources from our simulation is often seen by HPC
scientists as a waste or an unnecessary complication. On the other hand, in data centres
and HPC centres access and use is becoming progressively more complex, both from the
software and from the hardware point of view, and these are strongly penalising
portability. The software layers needed for operating a large production cluster require
a slow, unique, error-prone, and often non-portable deployment effort. With the recent
advances in emerging technologies (processing units, storage, network) the hardware
also requires extra effort from system administrators and users. Thus, we have the
request for absolute performance from pure HPC users, and on the other hand, we have
the compromise of trading performance for an easier and more portable deployment of
system software and applications. Additionally, it is obvious that all the modern general
purpose supercomputers should allow that all applications running on them can expect
to benefit from HPC. Therefore, such supercomputers to which we have access are never
optimised for one kind of application only. This is even more the case now, with
heterogeneous high-end architectures which are also used by people doing ML/AI in an
embarrassingly parallel manner on hundreds to thousands of GPUs.

Additionally, simulating biological systems is fundamentally a multi-scale / multi-physics
problem [4]. Predictions of real world events, such as weather forecasting, when cement
will set, the occurrence of an earthquake or what medical intervention to perform in
order to save a person’s life, all require the bringing together of substantial quantities
of data together with the performance of multi-dimensional simulations before the
event in question occurs. Such forms of calculation are among the most demanding in
computational science, as they need to be done rapidly, accurately, precisely and
reliably. Moreover, they must include the quantification of the uncertainties associated
with them. All these systems are multi-scale in nature, as their accuracy and reliability
depend on the correct representation of processes taking place on several length and
time scales. Only now, as we move toward the exascale era in high performance
computing (HPC) can we expect to be able to tackle such problems effectively and,
eventually, in a routine manner.

In a multi-scale simulation, and considering the aforementioned monololithic, coupled
and ensemble patterns, each relevant scale needs its own type of solver, which
represents the scales own requirements derived from their respective focus of the
associated physical model. Accordingly, a multi-scale model is no more than a collection
of coupled single scale models (loosely defined based on the dominant physical
properties that can be computed reliably with a dedicated, so-called “monolithic”
solver). With this in mind, it is very reasonable to think that, instead of a very large
hardware system to solve "all at once" in the largest possible monolithic algorithm,
multi-scale / multi-physics problems will be solved by efficient coupling scales and

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 15 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

physics in a relatively controlled manner, which from the computational point of view
involves the coupling of both codes and hardware systems. Each problem should be
solved as efficiently as possible and coupling must be done avoiding bottlenecks due to
algorithmic reasons or communication latency.

In this context, containerisation appears to be a good option to allow rapid deployment
in different parallel architectures, providing that efficiency is sustained. It is important
to remark that containerisation is not at all an exclusively cloud-related topic, because
in heteogeneous supercomputing systems it could also be an important weapon to
somewhat smooth the heterogeneity. Therefore, CompBioMed should keep an eye on
any type of container, from those which can offer HPC capabilities, such as Singularity,
down to very popular containers which are useful for smaller applications, such as
Docker. The reason is that both coupled and ensemble patterns will eventually need
mixtures of large and small size parts. Although similar evaluations have already shown
promising results for small benchmarks, we base our evaluation not on specific
benchmarks but on a large production, biological, organ-level simulation involving
hundreds of thousands of lines of code. CompBioMed therefore aims to assist both HPC
developers, end users and HPC system administrators to make the best choice to find
the optimal scenario regarding performance and portability for running a production
scientific application using containers on different supercomputers. Thanks to the wide
scope of our applications, we explore containerisation in several scenarios. At the
molecular level, an example of their effective use can be found in the work of the
CompBioMed consortium partner Acellera. Acellera's "In Silico Binding Analysis" service
makes extensive use of Amazon's EC2 Cloud computing platform. The large quantity of
computation required, coupled with the need to meet the pressing deadlines of
customers would be uneconomic to undertake on in-house resources, or via outsourcing
to a conventional HPC centre. At the other end lies Alya, the multi-physics code
developed by BSC, which solves biomedical applications at the cell, tissue and organ
level. In the discussion section, these and more examples will be presented, and in the
following deliverable D2.4, we will include more examples, analysing the impact of our
work.

7.4 Exascale Computing

We previously mentioned Moore's law. Moore’s law states that the number of
transistors in a dense integrated circuit doubles approximately every two years. This law
formulated in 1965 not only proved to be true, but it also translated into the doubling
of the computing capacity of cores every 24 months. This was possible not only by
increasing the number of transistors but also by increasing the frequency at which they
worked. However, we can say that in the last few years the end of this paradigm seems
to have arrived. The reason is that the performance of a single core is no longer
increasing at the same pace. There are three main reasons for this:

The memory wall: This refers to the gap in performance that exists between processor
and memory (CPU speed improved at an annual rate of 55% up to 2000, while memory
speed only improved at 10%). The main method for bridging the gap has been to use

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 16 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

caches between the processor and the main memory, increasing the sizes of these
caches and adding more levels of caching. But memory bandwidth is still a problem that
has not been solved.

The instruction-level parallelism wall: Increasing the number of transistors in a chip as
Moore’s law says is used in some cases to increase the number of functional units,
allowing a higher level of instruction-level parallelism (ILP) because there are more
specialised units or several units of the same kind (i.e., two floating point units that can
process two floating point operations in parallel). However, finding enough parallelism
in a single instruction stream to keep a high-performance single-core processor busy is
becoming more and more complex. One of the techniques to overcome this has been
hyper-threading. This involves making a single physical core presented as two (or more)
to the operating system. Running two threads allows exploitation of instruction-level
parallelism.

The power wall: As we stated above, not only the number of transistors has been
increasing but also their frequency. Yet there exists a technological limit to surface
power density, and for this reason, clock frequency cannot scale up freely any more. Not
only would the amount of power that must be supplied be unfeasible, but also the chip
would not be able to dissipate the amount of heat generated. To address this issue, the
trend is to develop simpler and specialised hardware and aggregate more of them (i.e.,
Xeon Phi, GPUs).

Nevertheless, computer technologists are also focussed on making exascale machines,
but they cannot rely on increasing the performance of a single core as they used to. The
workaround is that the number of cores and accelerators per chip and per node has
grown fast in the recent years, along with the number of nodes in a cluster. This is
pushing research into more complex memory hierarchies and network topologies.

Once exascale machines are available, the challenge is to have applications that can
make efficient use of them by scaling to these levels. The increase in complexity of the
hardware is a challenge for scientific application developers because their codes must
run efficiently on more complex hardware and address a higher level of parallelism at
both shared and distributed memory levels. This is where co-design is essential, and
where we have invested time to adjust and update our codes to run efficiently on these
future archetectures. Co-design implies a mutual effort of hardware developers, system
integrators, and application developers to build future compute platforms together with
performant software that runs on them. Being a domain-science centric CoE covering a
broad range of applications, we see our main contribution on the software side. We will
mainly address two aspects namely, support and guidelines for code adaptation and
porting (software co-design) and performance modelling for future simulations that can
be used for the design of new hardware and systems (hardware co-design). For both
aspects, we need reliable data, which we obtain by setting up a scalable CompBioMed
benchmark suite. It will cover the monolithic and coupled pre-exascale codes PALABOS,
HemoCell, Alya, HemeLB as well as a set of MD codes such as GROMACS, NAMD, AMBER,

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 17 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

and OpenMM, which are all used by the pre-exascale workflow BAC. Note that, for BAC,
we have already achieved ports of ESMACS and TIES onto GPUs and hybrid workflows
that use RADICAL-Cybertools (RCT) on Summit to fully exploit all cycles available on such
hybrid machines. Scalability in this respect implies that for each application we provide
different size-consistent input sets targeting single nodes to tier-0 machines that show
similar characteristics such as memory consumption, communication, etc. with respect
to one node across all scales.

At this point, only a global unified effort (hardware manufacturers, middleware and
software developers, researchers, users, etc.) incorporating a co-design approach will
enable exascale applications. Scientists in charge of HPC applications need to be able to
trust in the parallel middleware and runtime libraries available to help them exploit the
parallel resources. Additionally, completely new debugging and profiling tools must be
designed and developed to cope with large-scale runs. The complexity and variety of the
hardware no longer allows the manual tuning of the codes for each different
architecture, requiring flexible programming languages and extensions. On this regard,
a project like CompBioMed, partnered by stakeholders with all the possible viewpoints,
is arguably the best forum to propose co-design strategies on all the aforementioned
departments.

7.5 Integration: the HPC-Cloud infrastructure

At this point it is clear that a seamless integration of computing infrastructures of
different sizes in a cloud environment is a must. Exascale and cloud computing are not
isolated technologies. Since a few years ago, and in an almost exponential reaction,
almost all cloud providers are including HPC instances among their available offers
(notably Amazon AWS, Microsoft Azure, Oracle Cloud Infrastructure or Google Cloud).
Moreover, since very recently all of them provide tools to integrate the cloud provider's
infrastructures with on-premises' data centers to create a unified environment.

Based on the pyramidal scheme of Figure 1, which describes the anatomy of a
supercomputer, Figure 2 pictures HPC-Cloud integration. Pyramids of different sizes
(from single nodes to exascale supercomputers) are combined with a cloud
orchestration, to which the user gains access through a web-based frontend. This
integration combines the best of both worlds in a highly democratised fashion, making
computer power accessible to the largest possible number of researchers. It is worth
remarking that by facing exascale and cloud computing challenges simultaneously,
CompBioMed is providing a large corpus of scientific and technology research about the
deployment of simulation applications on HPC-Cloud infrastructure.

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 18 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Figure 2. The HPC-Cloud computing structure.

Examples of HPC-Cloud integration can be found throughout the CompBioMed
exemplars, as discussed in the Discussion section.

One of the main exascale computing patterns is concerned with ensemble computing,
one which is advocated by many of our sister CoE as their surefire route to exascale.It is
also a widespread modus operandi on modern supercomputers which is required for
performance of validation, verification and uncertainty quantification (VVUQ) and for
building applications based out of workflows of increasing complexity. Applications such
as the IMPECCABLE workflow for drug discovery cannot be run on cloud resources – it is
a workflow, itself the integration of four separate complicaqted workflows, combining
HPC with Machine Learning/Artificial Intelligence (ML/AI) methods. This is due to the
speed at which we need/expect to obtain results and the data flow that is required to
deliver them. An exascale machine which is optimised for such widespread usage
patterns could well have different design features from ones which run extreme scale
and coupled models. It will support the concurrent launching and execution of huge
numbers of tasks (eventually up to millions), each task being potentially an MPI process
itself. Today, many large supercomputers have hardwired limits to the maximum
number of tasks that they can support, a direct legacy of the old model in which only
monolithic applications were supported. Such complex workflow applications will put
more stress on such a computer’s parallel file system and less on indicidual
interconnects than those in the monolithic and coupled compute patterns. This in no
way means that the parallel compute pattern is not an exascale class application; rather
it means the nature of the architecture that optimises its performance would be
somewhat different from that on which the other patterns are optimised.

While the former is true in an academic environment, the advantages of cloud
computing will be more relevant to commercial entities because the cost model and QoS
issues are entirely different. Even in cases where one might claim that an application
could be run on a cloud, it is not cost effective to any academic to do so. We do not have
computer budgets comprised of real money and we get allocations on supercomputers,

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 19 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

not on clouds. That being said, there is a region in which the two modes overlap in order
to allow certain applications, which may turn out to be ultimately destined in part for
the cloud, to be developed initially on HPC architectures.

Co-design: The (yet) unreached holy grail

Before considering how to efficiently use the power available in future systems (mostly
exascale machines, but others too), there are other, not so obvious considerations, that
are of even larger relevance: will we be able to use it at all, even on a small scale? The
core issue, therefore, is not if an application will be efficient but if it is even prepared to
run on these future machines. For example, if exascale computers or cloud
environments are made using an architecture in which the code can run. Preparations
for exascale computing have led to the realization that future computing environments
will be significantly different from those that provide petascale capabilities, not to
mention High Performance Cloud. This change is driven by many issues, among them
energy constraints, which are compelling architects to design systems that will require
a significant re-thinking of the development and implementation of algorithms. Co-
design has been proposed as a methodology for scientific application, software and
hardware communities to work together [5]. HPC performance has improved by three
orders of magnitude almost every decade, a fact made possible by technology scaling
and advances in the system design (hardware and software) following an evolutionary
approach. Next generation hardware has been delivered to software developers who
ported and optimized the software stack to the delivered hardware. However, future
computing facilities will be different, and the entire system architecture will be vastly
transformed, and thus to realize the performance goal, a revolutionary approach is
required with strong software and hardware co-design strategy at its centre.

According to Barret et al. [5] co-design considers the entire system stack from
underlying technologies to applications (Figure 3). Applications provide insight into
compute patterns and data movement patterns to optimize the system, the execution
model implemented in the system software is tailored to provide services and manage
resources, and the programming system hides the underlying hardware and provides
programming productivity. From the bottom, technological issues and opportunities
need to be comprehended, and in the middle, the system architecture effort need to
devise the optimal system architecture considering top down requirements and bottom
up issues and opportunities.

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 20 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Figure 3. The co-design strategy, as stated in Barret et al. (see reference in the note)

In CompBioMed we develop applications for users, we do not build computers.
Therefore, to make this strategy work, we need a kind of "social contract" amongst the
different players. While hardware manufacturers rarely include application developers
in their staff, application development groups need to be closely connected to hardware
manufacturers and/or have hardware expertise internally, i.e, to know how the
underlying hardware responds to their algorithms. This gap is even larger if we consider
simultaneously both exascale hardware manufacturers and application researchers.
There have been (and are) many collaborative efforts to fill this gap, favouring co-design,
but to make this happen effectively will need a sustained commitment from all
stakeholders. Regarding HPC cloud, the situation is somewhat better, because cloud
providers take the role of "manufacturers" as they deploy the cloud facilities according
to user needs. Even so, things should be improved. So far, any HPC hardware
architecture becomes imposed from the manufacturer, while the buyer and developers
must make the best of the situation, with the highly esteemed help of middleware and
programming tool developers to fill the gaps as best as possible.

Even when conventional HPC system design involves a pipelined collaborative process
that includes all the requirements throughout the design process, when it is delivered,
4-6 years later, the rapid and disruptive changes anticipated in hardware design over
the next decade necessitate a more systematic and agile development process. This
process could be the hardware-software co-design processes developed for rapid
product development in the embedded space. Design methodologies on which we have
relied so far, never had to consider power constraints or parallelism of the scale being
contemplated for exascale systems. Furthermore, the programming model and software
environment for future extreme-scale systems is anticipated to be substantially

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 21 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

different from current practice. The designers of HPC hardware and software
components have an urgent need for a systematic design methodology that reflects
future design concerns and constraints.

The co-design strategy is based on developing partnerships with computer vendors (and
cloud providers) and application scientists and engaging them in a highly collaborative
and iterative design process well before a given system is available for commercial use.
The process is built around identifying leading edge, high-impact scientific applications
and providing concrete optimization targets rather than focusing on speeds and feeds
(FLOPs and bandwidth) and percent of peak. Rather than asking “what kind of scientific
applications can run on an Exascale system” after it arrives, instead we need this
application-driven design process to ask, “what kind of system should be built to meet
the needs of the most important scientific problems.” This leverages deep
understanding of specific application requirements and a broad-based computational
science portfolio. Focusing on delivered scientific application performance in the design
process is essential to define a common optimisation target that spans hardware and
applications. Target application programs often consist of a million source lines of code
involving multiple programming languages, third party library dependencies, and other
complexities.

The Centres of Excellence are a very good environment to help implement co-design
practices. Centres like CompBioMed puts together high- and low-level expertise that can
provide hardware vendors and cloud providers the required knowledge to foresee
future needs, if not to steer their production efforts. In our centres, even if we cannot
provide the bottom-up arrow of Figure 3, we can go deeply into analysing the top-down
arrow approach, providing indications that help the manufacturers to bring their
powerful tools closer to the developers' needs, especially in configuring the exascale
arena in a way that all its potential can be exploited. A decisive weapon to steer co-
design is performance analysis tools, because they not only can help developers to
improve software efficiency, but also, they can show manufacturers which problems we
face that could be improved with architecture some changes. In the discussion section
we provide several examples on the kind of information that such tools can provide.

In the next section, we highlight the top-down strategy co-design areas. With this
information to hand, it is our mission to establish deeper links with vendors and
providers discussions of the future of HPC computing. The supercomputing centres
partnering CompBioMed are in a privileged position to streamline these communication
channels.

8 Discussion
In this section we will summarise the results so far attained by CompBioMed in porting
applications to novel architectures and investigating the path to exascale computing.
This joint effort will lead us to the final goal, the efficient use of HPC-Cloud computing
resources. The results are grouped in sections devoted to each exemplar, with a final

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 22 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

section focused on the important issue of Input/Output (I/O) and data access through
visualisation in the HPC era.

Due to the variety of applications supported within CompBioMed, there cannot be one
overriding metric to measure exascale performance. The compute pattern, expected
outcome and application all need to be considered in order to determine the best
measure for exascale potential. The indication of such metrics is an ogoing discussion
between all CoEs and whilst this takes place we propose in the table below a list of
metrics with their advantages and disadvantages:

Table 1: List of metrics for determining exascale potential with advantages and disadvantages of
each.
Metric Type Advantages Disadvantages

Cores Scale Simple measure of number
of cores deployed

• Assumes
equivalence
between CPUs and
GPUs

• Reflects poorly on
GPU codes

• HPC facilities have
far fewer GPUs than
CPUs

Threads Scale Gives strong indication of
total number of parallel
processes utilised by a job

• Assumes a GPU
thread and a CPU
core are equivalent

• Reflects poorly on
CPU codes

Nodes Performance Simple measure of total
nodes used by a job

• Resources available
on a node varies
widely between HPC
facilities

• GPUs may not be
available on all
nodes

• Job may not
demand all
resources of a node

Resource
%

Scale Indicator of how much of a
computer’s resources are
being requested

• HPC policies may
limit the maximum
resources that can
be requested

• Dependent on
resource

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 23 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

distribution
between nodes

Wall time Performance Easiest measure to record • Geometry
dependent measure

Speed up Performance Straightforward measure to
interpret performance

• Derived unit from
wall time or MLUPS
of FLOPS

MLUPS Performance Geometry independent • Measure that is
most relevant to
LBM codes

Requested
FLOPS

Scale • Measures total
available computer
power

• Allows direct
comparison between
GPUs and CPUs

• Peak FLOPS of given
resource is always a
theoretical value,
actual proportion of
this utilised depends
on hardware
specific
optimisations

• Not a direct
measure of parallel
performance

Load /
Data
balance

Performance • Increases efficiency,
especially in
heterogeneous
systems

• Measures compact
and "fair" use of the
resources

• Has a strong
beneficial impact on
energy consumption

• Requires careful
study of each
software
component, and
how resources are
used

• Requires thorough
knowledge of target
code

• Requires major
effort in code re-
engineering, from
algorithms to
implementation

• Geometry
dependent measure

Task start-
up time

Performance Is relatively invariant to scale,
i.e., is largely independent of
the number or the length of
the tasks

• Dependent on the
communications
with resource
managers and
parallel

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 24 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

programming
libraries

Sustained
number of
tasks

Performance Measures total number of
tasks completed

• HPC policies may
limit the maximum
resources to which
tasks can be
assigned

• Dependent on the
stability of hardware

8.1 Cardiovascular Exemplar

Cardiac fluid-structure interaction simulations in HPC-Cloud using containers (BSC)

In [3], the authors present a summary of three container solutions to evaluate their
feasibility for HPC environments using Alya as the simulation code: Docker, Singularity
and Shifter, considering that containerization could be a fantastic solution to port codes
to large-scale system. In particular, the information published can be studied by
container developers to adapt their software to, on one hand, our codes and, on the
other hand, to larger systems up to the exascale arena. Alya is an example of an HPC
code that can take part in the three multiscale patterns, making it very appealing to do
such analysis.

From the analysis, we observe that Docker, the standard de-facto solution in cloud
environments, presents some security and performance issues that make its adoption
in HPC centers very unlikely, at least in its current state of development. On the other
hand, Singularity is gaining attention in the HPC domain due to its performance, ease of
use and integration with MPI and Slurm. The authors also looked at emerging solutions
like Shifter, which seems to follow the trend of Singularity regarding its lightweight
overhead but still has some issues concerning usability and portability to non-Cray
systems. It is worth remarking that a deep analysis of applications containerisation can
provide front line information for HPC cloud co-design because it is a clear way of
highlighting our needs and steering their service provision.

A performance comparison of the three container technologies, done on a cardiac
mechanics fluid-structure simulation problem, has shown that Singularity and Shifter
can provide close to bare-metal performance in up to 112 MPI ranks. Docker performs
worse with degraded simulation performance due to communication overhead. This
overhead can be explained by the network virtualisation inherent to the Docker
approach.

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 25 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Figure 4. Scalability plot of an Alya case running on bare metal and on Singularity containers on

MareNostrum IV. "Bare metal" means no use of containers. "Singularity Generic" means that the
container image does not hold any host-specific features. "Singularity Host" means that the container

image leverages the host’s MPI high-performance network, with an integration of the container
environment with the host MPI libraries. In this way, the container invokes the host’s MPI taking

advantage of whatever specific configuration is available. Taken from [3].

In this paper [3], the authors also consider containers as a portability solution to mitigate
the divergence of architectures. They used three clusters with three different
architectures to evaluate the performance of their biological use case. Moreover, they
quantified the trade-off between portability and performance when building Singularity
images. It was demonstrated that it is possible to build a generic container that is
independent of the software stack on the host. But it was also shown that the
performance of such a generic container is far from that obtained in bare-metal
executions. On the other hand, they found that a container image built with the
performance libraries available in the host can achieve a performance comparable to
the bare-metal one.

In this light, the main conclusion is that, in the case of an HPC-based simulation code, it
is possible to adapt the kind of containerisation to a wide range of scenarios, combining
fast simulations with medium size and large-scale ones. In particular, the authors are
interested in cloud deployment of our simulation code, Alya, which solves complex
multi-physics / multi-scale problems, and in assessing its use within an HPC-Cloud
environment. The goal is to use the code in the biomedical context running cell, tissue
and organ level simulations of a given system (not only cardiovascular but also
respiratory, etc.) in a simultaneous and combined way. As such, the authors are more
interested in complex orchestrated sets of simulations of different computational cost
than in a single and heroic large-scale run. While Docker allows a flexible solution for
smaller simulations, Singularity provides great efficiency for larger ones. Combining the
options in a smart way should provide a very well suited solution for cloud deployment
of the kind of multi-scale / multi-physics problems we are attacking.

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 26 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

The paper presents scalability tests of a production biological simulation on up to 12,000
cores of a tier-0 cluster using containers in an unprecedented manner for HPC
containers. With this test, the authors expose that container technologies can scale at
the same rate as bare-metal if we sacrifice portability.

Since this was written in 2018, BSC has also worked on various optimisation aspects of
the code, to ensure that it makes use of the latest supercomputing architectures, and is
ready for the future architectures and potential exascale machines. Since its beginnings
in 2004, Alya has scaled well in an increasing number of processors when solving single-
physics problems such as fluid mechanics, solid mechanics, acoustics, etc. Over time, we
have made a concerted effort to maintain and improve scalability for multi-physics
problems. This poses challenges on multiple fronts, including: numerical models, parallel
implementation, physical coupling models, algorithms and solution schemes, meshing
process, etc.

Further details of scaling and the outlook for Alya can be found in the CompBioMed2
deliverable D2.1.

Cardiac fluid-electro-mechanical model of the heart for supercomputers and its application to
clinical, pharmaceutical and medical devices sectors (BSC, Oxford, UPF)

In this group of theses and papers [6–10], cardiac computational models, based either
on BSC's Alya or Oxford's CHASTE, are used in an HPC context to simulate specific
problems. In [6,7,10]a multi-physics / multi-scale fluid-electro-mechanical model of the
human heart is presented, called the Alya Cardiac Computational Model (Alya CCM) and
in [8,9] high definition simulations of electrophysiology including the torso are used to
solve complex problems. This is an example of a coupled computing pattern, in which
two or more large-scale parallel instances of the same code (Alya) are tightly coupled
together. Moreover, together with another partner (UCL) we are studying the possibility
of integrating this pattern with another large-scale code: HemeLB. Through these
papers, the model shows its potential in biomedical research to become computational
cardiac platforms, to study diseases, healing therapies and devices design and
operation. In both models (especially Alya CCM) the tight coupling between the different
structures and physics involved is fundamental to the problem solution, simulating
cardiac function as a complex fluid-electro-mechanical system.

This research line focuses on three aspects: the model’s physiological similarity, its
computational complexity and its efficient implementation on supercomputers. Being a
multi-scale / multi-physics system, coupling between electrophysiology, tissue
mechanics and blood flow must be accurately yet efficiently modelled. The Alya based
work also includes a 1D-3D coupling model to link the arterial network to the beating
heart. This is currently being extended and improved in collaboration with UCL and
Sheffield.

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 27 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Figure 5. Parallel performance of the Alya Red cardiac model. Speed up and efficiency for the

computational fluid dynamics (CFD, blood) and computational solid mechanics (CSM, mechanics and
electrophysiology) on up to 5000 core counts with a 10 million nodes problem. Extracted from [7].

Figure 6. Fully-coupled fluid-electro-mechanical simulation of a heart. The sequence shows the systole

process of a third degree atrio-ventricular block and the action of a trans-catheter intra-ventricular
pacemaker (the small red cylinder close to the heart apex). In this disease, the initial electrical stimulus

is not delivered to one of the ventricles, producing a strong heart malfunction. Tissue is coloured by
electrical activity and blood shows the so-called Q-criterion, which depicts blood flow vortices evolution.

Extracted from [7].

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 28 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Blood platelet aggregation simulations using data analysis (UNIGE)

A powerful way to attack multi-scale simulations deployed in HPC-Cloud environments
is with data analysis techniques of all kinds, including genetic algorithms, machine
learning and artificial intelligence. In their most complex form, these techniques can
combine high- and low-resolution simulations with experiments of all kinds, to obtain
the correct input parameters, to assess sensitivities of inputs or to create surrogate
predictive models.

In [11] the authors introduce a model in which data analysis techniques are used to
tackle the aggregation of blood platelets, which is part of the sequence of events leading
to the formation of a thrombus (clot). The authors had previously developed a numerical
model that quantitatively describes how platelets in a shear flow adhere and aggregate
on a deposition surface [12]. Five parameters specify the deposition process and are
relevant for a biomedical understanding of the phenomena. Experiments give
observations, at five-time intervals, on the average size of the aggregation clusters, their
number per mm2, the number of platelets and the ones activated per μl still in
suspension. Then, by comparing in-vitro experiments with simulations, the model
parameters can be manually tuned. Here, the authors use instead approximate Bayesian
computation (ABC) to calibrate the parameters in a data-driven automatic manner. ABC
requires a prior distribution for the parameters, which are taken to be uniform over a
known range of plausible parameter values. As ABC requires the generation of many
pseudo-data by expensive simulation runs, the authors have thus developed a high-
performance computing (HPC) ABC framework, taking into account accuracy and
scalability. The present approach can be used to build a new generation of platelets
functionality tests for patients, by combining in-vitro observation, mathematical
modelling, Bayesian inference and high-performance computing, deployed in an HPC-
Cloud environment. In this example, while code optimisation was specially focused at
the single node level, HPC-Cloud capabilities were put to a test, from deployment up to
managing complex workflows for the optimisation process.

Figure 7. The deposition surface of the Impact-R device after 300 seconds (left) and the corresponding

results of the deposition in the mathematical model (right). Black dots represent the deposited platelets
that are grouped in clusters. Extracted from [11].

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 29 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Large-scale intracranial vasculature blood modelling for magnetic drug targeting (UCL, UvA,
UNIGE)

In [13], the authors tackle a multi-scale / multi-physics problem which addresses the
issues arising as simulations approach the exascale range. The authors present an
efficient computational model for simulating magnetic drug targeting in patient specific
brain geometries, via the steering of paramagnetic nanoparticles with an external
magnetic field. The model couples the dynamics of spherical particles to a lattice-
Boltzmann hydrodynamics simulation, taking into account body forces (e.g. gravity),
diffusivity, and dipolar interactions. A study of the model's computational performance
found favourable results, with a performance drop of ~15% (relative to a simulation of
the hydrodynamics alone, i.e. in the absence of any particles) in the most extreme case
of load imbalance (all particles clustered in one region).

The code performance was assessed on up to 96,000 cores in EPCC's Archer
supercomputer, a European system and on up to 250,000 cores on NCSA's Blue Waters,
a US system, in another strong effort to push the limits to Exascale computing and CFD.
In this regard, the authors report these two main issues and solutions:

• The existing optimisation and profiling tools are generally inadequate at core
counts over 30,000 and only SCALASCA from POP CoE – including their support
– was sufficient to reach these scales effectively.

• MPI-2 and -3, such as it is, still only use 32-bit communication and this is
insufficient to manage the huge data movements on the machine when running
at core counts of hundreds of thousands. HemeLB has become a “use case” for
the MPI Forum and MPI-4 will be released in 2020 with clean 64-bit
communications as a result. Work is now getting underway in support of this
using BigMPI, planned for SuperMUC-NG.

The authors demonstrated the use of the model to predict the particle density (as a
function of time) near a target site for a specific patient cerebral vascular system and
heart rate, using a single point dipolar magnet. Through multi-scale coupling with a 1D
representation of the wider vascular system, we obtained inlet velocity profiles for a
patient in a range of physiological states (varying heart rate, cardiac output and mean
blood pressure). Initial results allow confidence in the viability of the model to answer a
wide range of questions relating to the design and manipulation of iron oxide
nanoparticles in a clinical context. Comparison to phantom flow results and medical
imaging research will allow further tuning of system parameters to further increase the
accuracy of the model. A next step toward using the simulation technique in a more
realistic manner will involve coupling of the flow solver to a comprehensive
electromagnetic simulation. This will allow for the investigation of particle behaviour
when exposed to more complex magnetic fields created by a combination of multiple
electromagnets.

In this problem, the authors addressed the difficulties of coupling particle transport with
continuum mechanics problems. Each of the two problems has its own parallelisation

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 30 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

paradigm, which when coupled together, can become antagonistic facing efficiency. This
is a typical difficulty of multi-physics coupling.

Figure 8. Volume rendering of the circle of Willis, constructed from an MRI scan of a human subject. The
circle of Willis is the main blood distribution system in the brain, and is located roughly in the center of

the head. Extracted from [9].

However, current effort is largely focussed on a new collaboration with a new associate
partner, The Foundation for Research on Information Technologies in Society (IT'IS), to
study blood flow in the entire human arterial tree, with eventual inclusion of the venous
tree too. Efficient voxelization of the input meshes, memory optimization of HemeLB for
a system of extreme sparsity, and development of load balancing schemes capable of
scaling to 100k+ cores is necessary for such an endeavour, and we have made good
progress on all fronts. This case is a very good example to help establish co-design ideas
due to the different algorithms present, especially the coupled ones, and the different
parallelisation schemes exposed.

Since this deliverable was written in 2018, further work has been conducted on this task
in collaboration with the POP CoE. The collaboration was able to demonstrate strong
scaling up to >300k cores (full machine scale) on SuperMUC-NG. Strong scaling has also
been shown in a self-coupled version up to 30k cores with full human venous and arterial
geometries.

In line with the upcoming pre-exascale machines expected at the end of 2021/beginning
of 2022, a new version of HemeLB is in development that makes use of GPUs within the
machines. This has been tested on Summit supercomputer and shown scaling of 90% up
to 6144 GPU cores with continued strong scaling up to 18,432 cores. Given the early
stages of this GPU-based codes, this shows an excellent outcome with the potential for
further optimisation to come.

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 31 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Porting and optimisation of a dense cellular suspensions flow application on novel and
advanced microarchitecture Intel Skylake (BULL)

In [7], the authors develop a method which simulates mechanical models for red blood
cells and reproduces the emergent transport characteristics of complex cellular systems.
The computational code, Hemocell (high pErformance MicrOscopic CELlular Library),
models the flow of blood at the cellular level. Blood plasma is represented as a
continuous fluid simulated with the Lattice Boltzmann Method (LBM) while the cells are
represented as discrete element method (DEM) membranes coupled to the fluid by the
immersed boundary method.

Figure 9. Hemocell profile chart. Palabos performs CFD operations based on the lattice Boltzmann

method (LBM). The HDF5 library is responsible for I/Os.

BULL’s team performed the porting of the Hemocell HPC code on their computing
platform. This platform offers several Intel Skylake nodes with the AVX-512 instruction
set (i.e. 512 bits Advanced Vector Extensions). The first analysis of the application’s
profile shows that the application is divided mainly into calls to the LBM solver Palabos
and I/Os using the HDF5 library (Figure 8). Therefore, considering these ratios in Figure
9, the LBM solver efficiency is responsible for the efficiency of the whole application.

Figure 10. Hemocell communication and execution time ratio and top MPI functions (Intel ITAC, profiling
tool). This analysis shows a code which does not exploit OpenMP parallelisation and suffers from large

MPI wait time.

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 32 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

The communication and execution time ratio and the MPI communication tracing
quickly identified the main issues (see Figure 10). The large MPI time is caused by
imbalance in the workload which can be mitigated using load balancing techniques.

Figure 11. Floating point unit (FPU) utilisation (Intel Application Performance Snapshot). On the left,

Analysis of the FPU utilisation with standard strong optimisation flags. On the right, FPU utilisation with
previous optimisation and strained vectorisation.

The standard optimisation flags do not allow retrieval of the vectorisation capabilities of
the CPU as shown in the left Figure 10. By forcing the vectorisation, the execution time
of the application does not show any improvement. As said in the precedent section,
the programmer must expose parallelisation at vectorisation level in order to make the
compiler react. Therefore, and after this preliminary analysis, further investigations will
be carried out, particularly on the data structure which very likely do not allow efficient
vectorisation due to a non-unit stride (see Figure 11).

Figure 12. Hemocell’s implementation of the data structure as Array of Structures (right). A Structure of
Array (right) allows to get more efficiency from a computational point of view as it allows vectorisation.

The conclusion is that good performance can only be ultimately obtained by efficient
algorithm implementation. Although some optimisations are done by tuning compiler
flags, greater speedups are obtained by choosing the proper implementation strategy
and data structure. Considering that current and future microarchitecture shall exploit
parallelism at all levels as described in the introduction of this document, it is necessary
to take advantage of these features in the code implementations. Further research will
be performed following these lines. Having studied and improved the application
performance with a hardware vendor partnering CompBioMed (Atos-Bull) is certainly a
very good way of pushing co-design.

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 33 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Load balance strategies for multi-physics problems in large-scale blood flow simulations (UvA)

The non-homogeneous distribution of computational costs is often challenging to
handle in highly parallel applications, especially in multi-physics problems. In [14], the
author studied the fractional load imbalance overhead in a high-performance biofluid
simulation aiming to accurately resolve blood flow on a cellular level, using a
methodology based on fractional overheads. In general, the concentration of particles
in such a suspension flow is not homogeneous. Usually, there is a depletion of cells close
to walls, and a higher concentration towards the centre of the flow domain, causing a
time-dependent and potentially high computational work imbalance. We perform
parallel simulations of such suspension flows. The emerging non-homogeneous cell
distributions might lead to strong load imbalance, resulting in deterioration of the
parallel performance. The authors formulate a model for the fractional load imbalance
overhead, validate it by measuring this overhead in parallel lattice Boltzmann based cell-
based blood flow simulations, and compare the arising load imbalance with other
sources of overhead, in particular the communication overhead. They find a good
agreement between the measurements and our load imbalance model. We also find
that in our test cases, the communication overhead was higher than the load imbalance
overhead. However, for larger systems, we expect load imbalance overhead to be
dominant. Thus, efficient load balancing strategies should be further developed.

Figure 13. Haematocrit distribution for the channel flow case with different numbers of Red Blood Cells

(N), average haematocrit H = 38%. ‘small’ (left), ‘intermediate’ (middle), and ‘large’ (right) systems.
Extracted from [14].

Since the initial test cases, the communication overhead has been further investigated
and optimisation work has been conducted on the code. A dynamic load-balancing
mechanism has been employed which tracks the load-imbalance and if it exceeds a
preset threshold, the simulation is checkpointed and restarted with a new
decomposition that ensures homogenous load distribution. Whilst scaling is maintained
at 25% over 8192 cores, further realistic cases are beginning which will result in a much
larger scale study.

In parallel to these efforts, evaluation of a heterogeneous CPU-GPU version of the code
has begun, where the cell mechanics (unstructured grid) are computed by the CPU,
while the local fluid field (structured grid) computation is offloaded to node-local GPUs.

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 34 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

This is a necessary step to be able to exploit a larger part of the computational resources
on emerging machines. While this development is in early stages yet, for a small realistic
geometry we find an approximately factor 2 speed-up.

Increasing MPI communication efficiency for the HemoCell codebase (UvA)

For HemoCell, their developers have also looked into improving the efficiency of the
communication between MPI processes. The communication of the cell material
information between the processes was one of the major bottlenecks of the simulation,
therefore, UvA researchers targeted this area by restructuring the communication
pattern and restricting information exchange to data that is strictly necessary. Improving
the efficiency in this context means that the communication structure needed to be
altered, but not the resulting computation. A new step in the communication was added
where instead of the fixed communication envelope a pre-compiled list of necessary
information was used. This presents a minimal computational overhead that is
counterweighted by the gain in reduced communication time.

The results are shown in Figure 14. By reducing the amount of data communicated and
improving on the algorithms and data structures used, we managed to get an overall
improvement of approx. 100% in wall clock time, and in the strongest scaled case we
get an improvement of 350%. Furthermore, the strong scaling properties are improved
as well. In practical scenarios this roughly means that when simulating blood flow in
microfluidic chip for 1 second, the computation time is reduced from 10 days to around
3 days.

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 35 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Figure 14. The top figure displays the performance of HemoCell before optimisation. The blue fluid bar

encompasses communication as well as computation. The total time per iteration is written in black. The
bottom figure displays the performance of HemoCell after the optimisation of the material

communication. Both graphs are generated on different supercomputers top: SuperMUC, bottom:
Marenostrum, therefore the difference between wall-clock times might not be due to optimisation,

however, this should not affect the parallel efficiency numbers (green percentages).

8.2 Molecularly-based Medicine Exemplar

Machine learning and large-scale computing (UPF)

CompBioMed directs its research to classical molecular dynamics (MD) simulations,
which will be able to reach sampling in the second timescale within five years, producing
petabytes of simulation data at current force field accuracy [15]. Notwithstanding this,
MD will still be in the regime of low-throughput, high-latency predictions with average
accuracy. In this paper, the authors envisage that machine learning (ML) will be able to
solve both the accuracy and time-to-prediction problem by learning predictive models
using expensive simulation data. On these grounds, such techniques can be considered
as a post-process stage: the predictive model is built upon those expensive individual
simulations. Apart from the research on the proper ML algorithms, the post-process
stage presents more difficulties, such as Input / Output (I/O), storage and data analysis.
The synergies between classical, quantum simulations and ML methods, such as artificial
neural networks, have the potential to drastically reshape the way we make predictions
in computational structural biology and drug discovery. This case also represents a
potential for co-design of a different kind than the precedent ones, because it focuses
on the efficiency of ML applications and MD.

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 36 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Figure 15. Overview of a combined simulation and machine learning approach. a. MD data generation is
expected to reach the second aggregated timescale by 2022 and an output files size of several petabytes
by 2022 based on a trend of maximum aggregated time per paper per year using the ACEMD software.
b. A first example of ML replacing QM to predict dihedral energies given a neural network trained with
QM simulations. c. An example of data augmentation by MD: augment protein-ligand binding poses for

a set of protein-ligand pairs with unknown binding mode; augment binding affinity data for a set of
resolved protein-ligand complex structures of unknown affinities. Extracted from [15].

Web-based application to support the preparation of protein structures (UPF)

Protein preparation is a critical step in molecular simulations that consists of refining a
Protein Data Bank (PDB) structure by assigning titration states and optimising the
hydrogen-bonding network. In [16], the authors describe ProteinPrepare, a web
application designed to interactively support the preparation of protein structures.
Users can upload a PDB file, choose the solvent pH value, and inspect the resulting
protonated residues and hydrogen-bonding network within a 3D web interface.
Protonation states are suggested automatically but can be manually changed using the
visual aid of the hydrogen-bonding network. Tables and diagrams provide estimated pKa
values and charge states, with visual indication for cases where review is required. The
authors expect the graphical interface to be a useful instrument to assess the validity of
the preparation, but nevertheless, a script to execute the preparation offline with the
High-Throughput Molecular Dynamics (HTMD) environment is also provided for non-
interactive operations.

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 37 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Figure 16. Main screen with the results of the preparation. Extracted from 11.

Large-scale computing and binding affinity prediction of bromodomain inhibitors (UCL)

As applications of computational chemistry in biomedicine become more established it
is increasingly important that results are reproducible and that the level of certainty
associated with them is well defined. With respect to the exascale, it is highly likely that,
even for those applications exhibiting excellent strong scaling characteristics, the trade-
off between resolving time or physical length scales in the system will frequently render
such simulations inefficient on enormous core counts when compared to the weak
scaling case (the use of multiple, so called replica, runs). We therefore expect that the
actual impact of exascale resources on future science applications will be to encourage
the use of uncertainty quantification (techniques that often require multiple runs) in a
field where researchers too often only run large simulations once [17,18].

In this context we have developed simulation protocols and workflow tools that derive
both results and associated error bars from ensembles of replica simulations. Within our
binding affinity calculator tool (BAC) we have automated two ensemble binding free
energy calculation protocols; ESMACS (enhanced sampling of molecular dynamics
with approximation of continuum solvent) and TIES (thermodynamic integration with
enhanced sampling)[17]. ESMACS is a faster but more approximate method, whereas
TIES employs a more exact yet more expensive methodology. Thus the two protocols
are designed to work in combination as drug discovery workflows move from hit to lead
to lead optimisation phases.

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 38 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Figure 17. Bromodomain inhibitor I-BET726 and its binding mode in BRD4-BD1 as studied by Wan et al.
[13]. Two views are displayed for the binding mode (PDB ID: 4BJX), in which I-BET726 is represented as

stick in cyan/blue/red/green, the protein is shown as cartoon in silver, the crystallographic water
molecules are shown as red balls, and clipped protein surfaces are shown in orange.

The need to manage large campaigns of related simulations, where for example ESMACS
rapidly rules out poor binders before TIES is employed when refining the best binders,
has led us to enhance the simulation execution of BAC. To this end we have developed
HTBAC [19], designed to manage complex workflows on multiple target HPC machines.
Not only does this provide us with flexibility in terms of determining at run time which
simulations should be continued based on their results (or the need to reduce
uncertainty) but it allows us to design adaptive protocols that optimally use resources
dependent on the sampling performance of individual simulations. Combining these two
techniques with a range of computational kernels (BAC/HTBAC support the use of
multiple MD engines, including those like ACEMD and OpenMM designed to fully exploit
GPUs) will allow the efficient exploitation of the exascale to produce new scientific
results with a greater level of robustness and reproducibility.

Our automated workflow and middleware development have allowed us to run
simulations on the entirety of the SuperMUC supercomputer (>250,000 cores) run by
the Leibniz Rechenzentrum, LRZ, near Munich, Germany. More recently, we were
presented with the HTBAC the 2018 IEEE/ACM International Scalable Computing
Challenge (SCALE) award [20] for our work in facilitating methods which allow
automated trade-off between accuracy and computational cost. These developments
are helping to prepare our protocols for the exascale an enable rigourous application of
uncertainty quantification as we move towards the exascale. They have also facilitated
our work using molecular dynamics simulations to machine learning techniques which
has led to our award of a US DoE INCITE HPC leadership award, of 80 million core hours
on the Titan supercomputer at the Oakridge National Laboatory in the US [21]. This
application will help foresee the hardware needs of large-scale MD applications and help
a better design of the future systems.

Since this has been written, UCL have also been working in a complementary study
(IMPECCABLE) in which they have coupled Machine Learning (ML) and Molecular
Dynamics (MD) techniques to increase throughput for drug discovery in light of the
Covid-19 pandemic. For this BAC was used to perform free energy calculations on a

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 39 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

variety of supercomputers including Leibniz Rechenzentrum’s SuperMUC-NG, Hartree
Centre’s ScafellPike, Swiss National Supercomputing Centre’s PizDaint, the University of
Edinburgh’s Advanced Computing Facility’ Archer, as well as other supercomputers
worldwide. We also use RADICAL-Cybertools (RCT) middleware for flexible task-level
parallelism [9], which allows us to submit multiple jobs to the batch system like a single
large job and is thus easier to schedule. BAC application uses an ensemble workflow, in
which high-throughput “embarrassingly” parallel workloads are run on a wide range of
node counts. The mean aggregated overhead of the middleware – RADICAL-Pilot (RP) –
is typically below 5% of the execution time, making the scaling of the overall workflow
very close to an ideal scaling (Figure 1).

Figure 1. Performance of binding affinity calculator (BAC) on different HPC facilities. Using a
single job submission with RCT middleware, the number of compounds evaluated by CG-ESMACS
increases linearly with the number of nodes up to the entire machines (see Table 1). The ideal
scalabilities are shown as the dashed lines. The performance in practice, however, is often limited
by allocation policies enforced on HPC facilities, which do not permit routine jobs at very large
scale.

Computational Methods for Structure-Based Drug Discovery (Evotec, UCL)

The approach employing large-scale computing and binding affinity calculation of
bromodomain inhibitors using ESMACS and TIES is also being applied to G protein-
coupled receptors (GPCRs), the primary site of action of 60% of modern drugs and one
of the most important and underexploited classes of current pharmacological targets
[22]. A series of A2A adenosine receptor ligands for which kinetic binding data from
existing radioligand binding experiments existed is used. The purpose of the present
study is to assess the use of ESMACS and TIES for the accurate and reproducible
prediction of binding free energies in ~50kDa membrane-bound receptors, as opposed
to ~18kDa globular bromodomains, and to use the BAC software tool and associated

0 1536 3072 4608 6144
Number of nodes

0

2000

4000

6000

8000

N
um

be
r o

f c
om

po
un

ds

SuperMUC-NG
Archer
PizDaint

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 40 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

services to improve industrial structure-based design approaches for novel GPCR
therapeutics.

Figure 18. Top down view of the A2A receptor containing a) XAC, b) Theo, c) ZMA, d) NECA, e) UK, f) NGI
in the binding pocket of the receptor. The coloring represents the ligand locations based on initial crystal
structure (black), the cluster of the ligands’ poses after the first 4 ns of production (blue), and the more

favored/adopted ones (red) after the 20 ns of production. The ΔG values represent the difference
between the computed binding free energies, inclusive of entropy from ESMACS (𝜟𝑮𝑬𝑺𝑴𝑨𝑪𝑺) after the

first 4 and last 4 ns of the production runs.

8.3 Neuro-musculoskeletal Exemplar

In the period covered by this report and due to the character of the problems this
exemplar deals with, the CompBioMed partners involved were mostly focused more on
complex workflows development, image processing and clinical assessment of the
results. Therefore, there is nothing to report, for this period, specifically related to HPC-
Cloud computing.

8.4 Input/Output and visualisation in the HPC era

In the three CompBioMed exemplars, input, output and the way data is analysed are key
issues. Molecular dynamics, 3D flow features, muscular fibre contraction, particle
transport or bone structure, are clear examples of the difficulties and the power of
visualisation once the problematic issues are solved. Elegant yet efficient solutions are
required, always keeping in mind the large-scale sizes of the resulting datasets. In this
section we summarise and discuss the different strategies we employ to tackle the
visualisation problems of CompBioMed exemplars. Additionally, I/O and visualisation is
a decisive arena for the hardware co-design, because CompBioMed applications are not

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 41 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

only greedy enough to provide a deep insight on the future system needs, but also
because they expose a common requirement of large-scale applications.

As discussed in [1], scientific visualisation focuses on the creation of images to provide
important information about underlying data and processes. In recent decades, the
unprecedented growth in computing and sensor performance has led to the ability to
capture the physical world in unprecedented levels of detail and to model and simulate
complex physical phenomena. Visualisation plays a decisive role in the extraction of
knowledge from these data—as the mathematician Richard Hamming famously said,
“The purpose of computing is insight, not numbers...” [23]. Visualisation supports
improved understanding of large and complex data in two, three, or more dimensions
from different applications. In the kind of problems we are dealing with, visualisation is
of great importance, as simulation results are often best represented in the time-
dependent three-dimensional form we are familiar with.

Traditionally, I/O and visualisation are closely related as, in most workflows, data used
for visualisation are written to disk and then read by a separate visualisation tool. This
is also called “post-mortem” visualisation, since the visualisation may be done after the
simulations have finished. Other modes of interaction with visualisation are becoming
more common, such as in situ visualisation (in which the simulation code directly
produces visualisation images, using the same nodes and partitioning), or “in-transit”
visualisation (in which the simulation code is coupled to a visualisation program, possibly
running on other nodes and with a different partitioning scheme).

Input/Output. Complex multi-physics, organ level simulations (cardiovascular,
respiratory, etc.) writing files for post-mortem visualisation usually involve the highest
volume of output. There are however other operations, especially explicit check-
pointing at restart, that require the writing and reading of large datasets. Logging or
output of data subsets also requires I/O, often with a smaller volume but higher
frequency.

As these simulations can be quite costly, codes usually have a “checkpoint/restart”
feature, allowing the code to output its state (whether converging for a steady
computation or unsteady state reached for unsteady cases) to disk, for example, before
running out of allocated computer time. This is called check pointing. The computation
may be restarted from the state reached by reading the checkpoint from a previous run.
This requires both writing and reading. Some codes use the same file format for
visualisation output and check pointing, but this assumes data required are sufficiently
similar and often that the code has a privileged output format. When restarting requires
additional data (such as field values at locations not exactly matching those of the
visualisation, or multiple time steps for smooth restart of higher order time schemes),
code-specific formats are used.
 
Parallel Input/Output. There are several ways of handling I/O for parallel codes. The
simplest solution is to read or write a separate file for each MPI task. On some file

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 42 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

systems, this may be the fastest method, but it leads to the generation of many files on
large systems, and requires external tools to reassemble data for visualisation, unless
using libraries which can assemble data when reading it (such as VTK using its own
format). Reassembling data for visualisation (or partitioning on disk) requires additional
I/O, so it is best to avoid this if possible. Another approach is to use “shared” or “flat”
files, which are read and written collectively by all tasks. MPI I/O provides functions for
this (for example MPI_File_write_at_all using MPI), so the low-level aspects are quite
simple, but the calling code must provide the logic by which data are transformed from
a flat, partition- independent representation in the file to partition-dependent portions
in memory. This approach provides the benefit of allowing check pointing and restarting
on different numbers of nodes and making parallelism more transparent for the user,
though it requires additional work for the developers. Parallel I/O features of libraries
such as HDF5 and NetCFD seek to make this easier (and libraries build on them such as
CGNS and MED can exploit those too).

Performance of parallel I/O is often highly dependent on the combination of approach
used by a code and the underlying file system. Even on machines with similar systems
but different file system tuning parameters, performance may vary. In any case, for good
performance on parallel file systems (typical of shared file systems on modern clusters),
it is recommended to avoid funnelling all data through a single node except possibly as
a fail-safe mode. In any case, keeping data fully distributed extending to the I/O level is
a key to handling very large datasets, which do not fit in the memory of a single node.

Visualisation pipeline. The “visualisation pipeline” is a common method for describing
the visualisation process. When the pipeline is run through, an image is calculated from
the data using the individual steps Filtering - Mapping - Rendering. The pipeline filter
step includes raw data processing and image processing algorithm operations. The
subsequent “mapping” generates geometric primitives from the pre-processed data
together with additional visual attributes such as colour and transparency. Rendering
uses computer graphics methods to generate the final image from the geometric
primitives of the mapping process.

Regardless of the dimensionality of the data fields, any visualisation of the whole three-
dimensional volume can easily flood the user with too much information, especially on
a two-dimensional display or a piece of paper. Hence, one of the basic techniques in
visualisation is the reduction/transformation of data. The most common technique is
slicing the volume data with cut planes, which reduces three-dimensional data to two
dimensions.

Colour information is often mapped onto these cut planes using another basic well-
known technique called colour mapping. Colour mapping is a one-dimensional
visualisation technique. It maps a scalar value to a colour specification. The scalar
mapping is done by indexing into a colour reference table—the lookup table. The scalar
values serve as indices in this lookup table including local transparency. A more general

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 43 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

form of the lookup table is the transfer function. A transfer function is any expression
that maps scalars or multidimensional values to a colour specification.

Colour mapping is not limited to 2D objects like cut planes, but it is also often used for
3D objects like isosurfaces. Isosurfaces belong to the general visualisation technique of
data fields, which we focus on in the following.

Visualisation of scalar fields. Scalar fields are, for instance, pressure, temperature,
electrical activation, ion concentration, etc. For the visualisation of three-dimensional
scalar fields, there are two basic visualisation techniques: isosurface extraction and
volume rendering.

Figure 19. Visualisation of flame simulation results (left) using slicing and color mapping in the

background, and isosurface extraction and volume rendering for the flame structure. Visualisation of an
inspiratory flow in the human nasal cavity (right) using streamlines colored by the velocity magnitude.

Isosurface extraction is a powerful tool for the investigation of volumetric scalar fields.
An isosurface in a scalar volume is a surface in which the data value is constant,
separating areas of higher and lower value. Given the physical or biological significance
of the scalar data value, the position of an isosurface and its relationship to other
adjacent isosurfaces can provide a sufficient structure of the scalar field.

The second fundamental visualisation technique for scalar fields is volume rendering.
Volume rendering is a method of rendering three-dimensional volumetric scalar data in
two-dimensional images without the need to calculate intermediate geometries. The
individual values in the dataset are made visible by selecting a transfer function that
maps the data to optical properties such as colour and opacity. These are then projected
and blended together to form an image. For a meaningful visualisation, the correct
transfer function must be found that highlights interesting regions and characteristics of
the data. Finding a good transfer function is crucial for creating an informative image.
Multidimensional transfer functions enable more precise delimitation from the
important to the unimportant. Therefore, they are widely used in volume rendering for
medical imaging and the scientific visualisation of complex three- dimensional scalar
fields.

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 44 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Visualisation of vector fields. Vector fields are, for instance, velocity, displacement,
acceleration, magnetic or electric fields, etc. The visualisation of vector field data is
challenging because no existing natural representation can convey a visually large
amount of three-dimensional directional information. Visualisation methods for three-
dimensional vector fields must therefore bring together the opposing goals of an
informative and clear representation of a large number of directional information. The
techniques relevant for the visual analysis of vector fields can be categorised as follows.

The simplest representations of the discrete vector information are oriented glyphs.
Glyphs are graphical symbols that range from simple arrows to complex graphical icons,
directional information, and additional derived variables such as rotation.

Streamlines provide a natural way to follow a vector dataset. With a user-selected
starting position, the numerical integration results in a curve that can be made easily
visible by continuously displaying the vector field. Streamlines can be calculated quickly
and provide an intuitive representation of the local flow behaviour. Since streamlines
are not able to fill space without visual disorder, the task of selecting a suitable set of
starting points is crucial for effective visualisation. A limitation of flow visualisations
based on streamlines concerns the difficult interpretation of the depth and relative
position of the curves in a three-dimensional space. One solution is to create artificial
light effects that accentuate the curvature and support the user in depth perception.

Stream surfaces represent a significant improvement over individual streamlines for the
exploration of three-dimensional vector fields, as they provide a better understanding
of depth and spatial relationships. Conceptually, they correspond to the surface that is
spanned by any starting curve, which is absorbed along the flow.

Texture-based flow visualisation methods are unique means to address the limitations
of representations based on a limited set of streamlines. They effectively convey the
essential patterns of a vector field without lengthy interpretation of streamlines. Its
main application is the visualisation of flow structures defined on a plane or a curved
surface. The best known of these methods is the line integral convolution (LIC), which
has inspired a number of other methods. In particular, improvements have been
proposed, such as texture-based visualisation of time-dependent flows or flows defined
via arbitrary surfaces. Some attempts were made to extend the method to three-
dimensional flows.

Furthermore, vector fields can be visualised using topological approaches. Topological
approaches have established themselves as a reference method for the characterisation
and visualisation of flow structures. Topology offers an abstract representation of the
current and its global structure, for example, sinks, sources, and saddle points. A
prominent example is the Morse-Smale complex that is constructed based on the
gradient of a given scalar field.

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 45 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Visualisation of tensor fields. Tensor fields are, for instance, velocity gradients,
deformation tensor, stress tensor in all its modalities (Cauchy, Piola-Kirchoff,...), etc.
Compared to the visualisation of vector fields, the state of the art in the visualisation of
tensor fields is less advanced. It is an active area of research. Simple techniques for
tensor visualisation draw the three eigenvectors by colour, vectors, streamlines, or
glyphs.

In situ visualisation. According to the currently most common processing paradigm for
analysing and visualising data on supercomputers, the simulation results are stored on
the hard disk and reloaded and analysed/visualised after the simulation. However, with
each generation of supercomputers, memory and CPU performance grows faster than
the access and capacity of hard disks. As a result, I/O performance is continuously
reduced compared to the rest of the supercomputer. This trend hinders the traditional
processing paradigm.

One solution is the coupling of simulations with real-time analysis/visualisation—called
in situ visualisation. This technique necessarily starts before the data producer finishes.
The key aspect of real-time processing is that data are used for visualisation/analysis
while still in memory. This type of visualisation/analysis can extract and preserve
important information from the simulation that would be lost as a result of aggressive
data reduction.

Various interfaces for the coupling of simulation and analysis tools have been developed
in recent years, notably ParaView/Catalyst and VisIt/libSim. These interfaces allow a
fixed coupling between the simulation and the visualisation and integrate large parts of
the visualisation libraries into the program code of the simulation. Recent developments
favour methods for loose coupling as tight coupling proves to be inflexible and
susceptible to faults. Here, the simulation program and visualisation are independent
applications that only exchange certain data among each other via clearly defined
interfaces. This enables independent development of simulation code and
visualisation/analysis code. It is worth mentioning that HemelB and Alya are already
experimenting with in situ visualisation capabilities.

9 Conclusion

In this document we have focussed on two issues, which result in a combined strategy.
On one hand, we reviewed the status of those codes from the CompBioMed software
stack that are on the road to exascale computing. On the other hand, we looked at
porting to architectures currently considered as “novel”, notably Cloud Computing
especially focusing on its burgeoning HPC capabilities. As stated above, the former,
exascale, is the present "novel" architecture and the latter, HPC-Cloud, is a future
"novel" architecture. We strongly believe that the combined situation, HPC-Cloud
environments will be ideal platform for Software-as-a-Service in the years to come. With
the experience gained in CompBioMed we are in a privilege position to establish a fluent

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 46 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

dialogue with hardware vendors and cloud providers, helping that future facilities
become closer (by conception) to the application needs.

This report is a selected compilation of the research in this area by CompBioMed
partners, in papers published or on the way to being published, related to the three
research exemplars, with a special section devoted to Input-Output and Visualisation.

It is worth mentioning that this report is complementary to D2.2 Report on
Deployment of Deep Track Tools and Services to Improve Efficiency of Research and
Facilitating Access to CoE Capabilities.

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 47 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

10 References

1. PRACE CSS. The Scientific Case for Computing in Europe 2018-2026.
2. Houzeaux G, Borrell R, Fournier Y, Garcia-gasulla M, Göbbert JH, Hachem E, et

al. We are IntechOpen , the world ’ s leading publisher of Open Access books
Built by scientists , for scientists TOP 1 %. InTechOpen. 2018;
https://www.intechopen.com/books/computational-fluid-dynamics-basic-
instruments-and-applications-in-science/high-performance-computing-dos-and-
don-ts.

3. Ruddy O, Garcia-Gasulla M, Mantovani F, Santiago A, Sirvent R, Vazquez M.
Containers in HPC: A Scalability and Protability Study in Production Biological
Simulations. In: 2018 International Parallel and Distributed Processing
Symposium. 2019.

4. Alowayyed S, Groen D, Coveney P V, Hoekstra AG. Multiscale Computing in the
Exascale Era. J Comput Sci. 2016;abs/1612.0:(Submitted).
http://arxiv.org/abs/1612.02467. 10.1016/j.jocs.2017.07.004

5. Barrett RF, Borkar S, Dosanjh S, Hammond SD, Heroux MA, Hu S, et al. On the
Role of Co-design in High Performance Computing. In: Volume 24: Transition of
HPC Towards Exascale Computing. IOS Press; 2013. p. 141–55. 10.3233/978-1-
61499-324-7-141

6. Lopez M. Multimodal ventricular tachycardia analysis: towards the accurate
parametrisation of predictive HPC electrophysiological computational models.
Universitat Politecnica de Catalunya; 2018.

7. Santiago A. Fluid-electro-mechanical model of the human heart for
supercomputers. Universitat Politecnica de Catalunya; 2018.

8. Lyon A, Mincholé A, Martínez JP, Laguna P, Rodriguez B. Computational
techniques for ECG analysis and interpretation in light of their contribution to
medical advances. J R Soc Interface. 2018 Jan 1;15(138).
http://rsif.royalsocietypublishing.org/content/15/138/20170821.abstract.

9. Cardone-Noott L, Rodriguez B, Bueno-Orovio A. Strategies of data layout and
cache writing for input-output optimization in high performance scientific
computing: Applications to the forward electrocardiographic problem. Oliveira
RS, editor. PLoS One. 2018 Aug;13(8):e0202410. 10.1371/journal.pone.0202410

10. Garcia-Canadilla P, Dejea H, Bonnin A, Balicevic V, Loncaric S, Zhang C, et al.
Complex Congenital Heart Disease Associated With Disordered Myocardial
Architecture in a Midtrimester Human Fetus. Circ Cardiovasc Imaging. 2018
Oct;11(10). 10.1161/CIRCIMAGING.118.007753

11. Dutta R, Chopard B, Latt J, Dubois F, Zouaoui B, Mira A. Parameter Estimation of
Platelets Deposition: Approximate Bayesian Computation With High
Performance Computing. Front Physiol. 2018;
https://doi.org/10.3389/fphys.2018.01128. 10.3389/fphys.2018.01128

12. Chopard B, Ribeiro de Sousa D, Latt J, Mountrakis L, Dubois F, Yourassowsky C,
et al. A physical description of the adhesion and aggregation of platelets. R Soc

D2.3 Report on Extreme Scaling of and Porting of
Exemplar Applications to Novel Architectures

PU Page 48 Version 1.1

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No 675451“

Open Sci. 2017;4.
https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.170219.
10.1098/rsos.170219

13. Patronis A, Richardson RA, Schmieschek S, Wylie BJN, Nash RW, Coveney P V.
Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial
Vasculature. Front Physiol. 2018; https://doi.org/10.3389/fphys.2018.00331.
10.3389/fphys.2018.00331

14. Alowayyed S, Závodszky G, Azizi V, Hoekstra AG. Load balancing of parallel cell-
based blood flow simulations. J Comput Sci. 2018 Jan;24:1–7.
10.1016/j.jocs.2017.11.008

15. Perez A, Martinez-Rosell G, De Fabritiis G. Simulations meet Machine Learning in
Structural Biology. Curr Opin Struct Biol. 2018;49:139–44.
https://www.sciencedirect.com/science/article/pii/S0959440X17301069?via%3
Dihub.

16. Martínez-Rosell G, Giorgino T, De Fabritiis G. PlayMolecule ProteinPrepare: A
Web Application for Protein Preparation for Molecular Dynamics Simulations. J
Chem Inf Model. 2017 Jul;57(7):1511–6. 10.1021/acs.jcim.7b00190

17. Wan S, Bhati AP, Zasada SJ, Wall I, Green D, Bamborough P, et al. Rapid and
Reliable Binding Affinity Prediction of Bromodomain Inhibitors: A Computational
Study. J Chem Theory Comput. 2017;13(2):784–95. 10.1021/acs.jctc.6b00794

18. Bhati AP, Wan S, Hu Y, Sherborne B, Coveney P V. Uncertainty Quantification in
Alchemical Free Energy Methods. J Chem Theory Comput. 2018 Jun;14(6):2867–
80. 10.1021/acs.jctc.7b01143

19. Dakka J, Farkas-Pall K, Turilli M, Wright DW, Coveney P V, Jha S. Concurrent and
Adaptive Extreme Scale Binding Free Energy Calculations. 2018 Jan;

20. Lab BN. Software Framework Designed to accelerate Drug Discovery Wins IEEE
International Scalable Computing Challenge.

21. US Department of Energy INCITE Leadership Computing.
22. Heifetz A, Southey M, Morao I, Townsend-Nicholson A, Bodkin MJ.

Computational Methods Used in Hit-to-Lead and Lead Optimization Stages of
Structure-Based Drug Discovery. In: Computational Methods for GPCR Drug
Discovery. 2017. p. 375–94.

23. Hamming R. Numerical Methods for Scientist and Engineers. 1962.
https://epiportal.com/Ebooks/Numerical Methods for Engineers and
Scientists.pdf.

