

e-Seminar #16 PlayMolecule for Drug Discovery

Presenter: Roberto Fino (Acellera Labs SL)

25 May 2021

Welcome!

Moderator: Tim Weaving (University College London, UCL)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 675451

The e-Seminar series is run in collaboration with:

e-Seminar

e-Seminar #16 PlayMolecule for Drug Discovery

Presenter: Roberto Fino (Acellera Labs SL)

25 May 2021

The e-Seminar will start at 1pm CEST / 12pm BST

Moderator: Tim Weaving (University College London, UCL)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 675451 The e-Seminar series is run in collaboration with:

e-Seminar

PlayMolecule for Drug Discovery

Acellera, IT empowered drug discovery

Roberto Fino Computational Medicinal Chemist r.fino@acellera.com

FOUNDED IN 2006 London, Barcelona

SME

CUSTOMERS WORLDWIDE

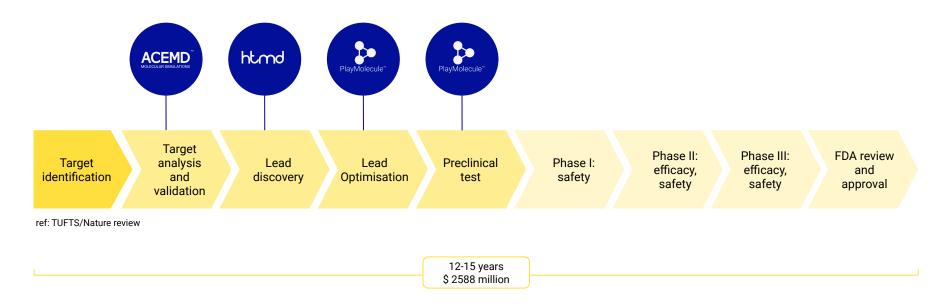
CUTTING EDGE TECHNOLOGY GPU, Cloud, Al

TOWARDS COMPUTERIZED DRUG DISCOVERY

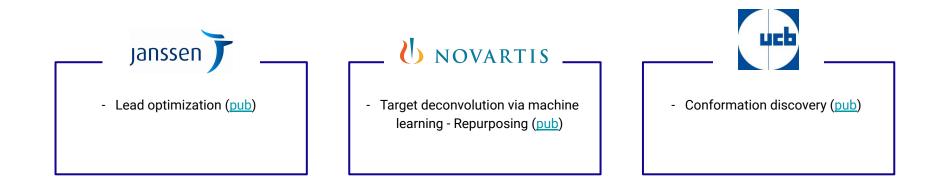
Unique innovative technology using ML/DL and MD

COLLABORATIONS WITH PHARMACEUTICAL COMPANIES AND ACADEMIA

INNOVATION AT THE HEART OF ACELLERA'S BUSINESS


2021 PlayMolecule private instance

- 2020 OPENMM collaboration Chan Zuckerberg Initiative support
- 2018 Launch of PlayMolecule Machine Learning for Drug Design
- 2018 Cryptic pocket in aminergic GPCRs
- 2016 HTMD lowers the barrier to build, run and analyze MD
- 2015 AceCloud MD on AWS Cloud
- 2014 Adaptive sampling reduces computational cost
- 2013 Metrocubo workstation- equipped with 4 GPUs
- 2011 Fitness of MD for drug discovery: benzamidine-trypsin
- 2009 ACEMD simulation software released MD on GPU
- 2006 Foundation of Acellera


OUR EXPERTISE AND GOALS

DRUG DISCOVERY & DEVELOPMENT PIPELINE

NON-CONFIDENTIAL INDUSTRIAL COLLABORATIONS

- In-silico binding assay for pose prediction via simulations (pub)
- Lead optimization via machine learning (pub)

- Generative models (pub)
- Lead optimization (pub)

PlayMolecule[™]

An integrated platform for drug discovery based on state-of-the-art machine learning and molecular simulations.

PLAYMOLECULE HALLMARKS

SCIENTIFIC COMMUNITY VALIDATION

>80.000 JOBS RUN

Main CompChem tool for 1000s of users, 18 applications available from target validation to affinity prediction

VALIDATED BY SEVERAL TOP PHARMA

Winner at D3R, logP challenge Scientific articles published with Novartis, Pfizer, Biogen, JnJ, UCB...

ADDED VALUE

REDUCES H2L and LO DELAY (BY AT LEAST FACTOR 2)

Free energy prediction, 1.000x faster than FEP, robust structural analysis

ACEMD PERFORMANCE

AVAILABLE APPS

0

MD simulations

- ProteinPrepare
- SystemBuilder
- MembraneBuilder
- Parameterize
- SimpleRun
- PlexView
- AdaptiveSampling

HTVS

- SkeleDock
- BindScope
- KDeep
- DeltaDelta
- PathwayMap

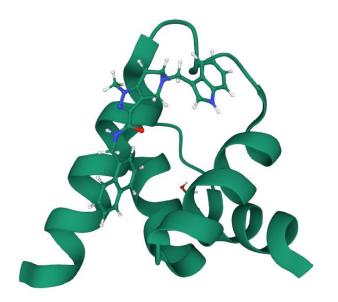
Chemical space exploration

Ligand-Based:

- LigaNN
- LigDream

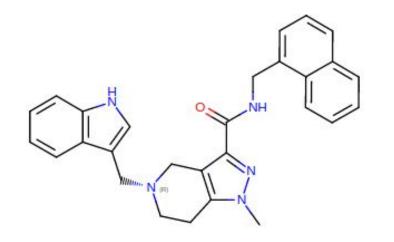
Structure-Based:

- DeepSite
- CrypticScout

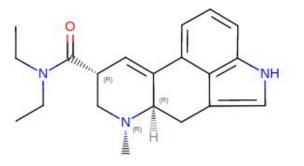




The systems


Case studies: PEX14 and 5HT2B

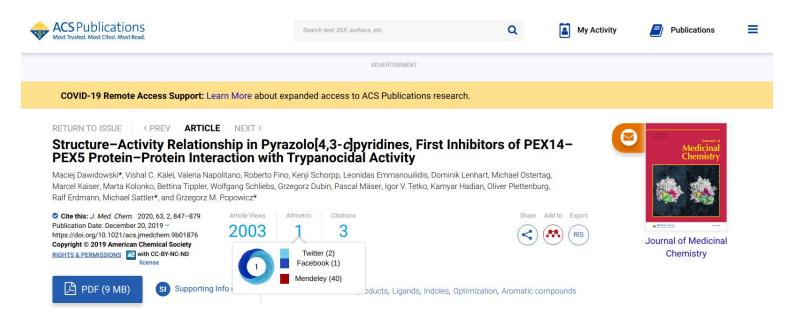
Globular protein: **PEX14** (PDB: 5L87)



The ligands

Pyrazolo[4,3-c]pyridines

proof-of-concept of the druggability of PEX14 and first attempt to develop new Trypanocidal agents by Popowicz AG (HMGU/TUM)



LSD

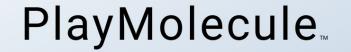
yes, THAT drug that gave us The Dark Side of the Moon and Sgt. Pepper's Lonely Hearts Club Band. First-ever X-ray structure of LSD bound to human 5HT_{2B} serotonin receptor.

Ligands for training and testing

Compounds for training are taken from the SI of this article:

Testing compounds come from 2D similarity screening (Tanimoto > 0.8) against Enamine REAL database: <u>https://www.enaminestore.com/search</u>

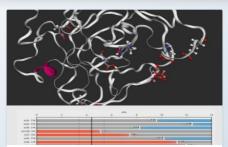
Landing on PlayMolecule


The welcome screen

b

One-click molecular discovery

READ OUR BLOG


DEEPSITE

Predict ligand binding pockets in your protein of interest by uploading a PDB file and running DeepSite, a neural network-based predictor

★★★★☆ (53) ■ 15329 ◆ GET STARTED REQUEST COLLABORATION

Tags: neural networks , binding pocket

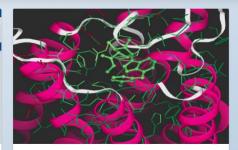
PROTEINPREPARE

Make your protein ready for molecular dynamics simulations by titrating and protonating the protein at a desired pH and by optimizing the H-bond network

Tags: molecular dynamics , protonation

Circle 1: Date same diversion (corr) (Correction) Circle 1: Date same diversion (correction) Circle 1: Date

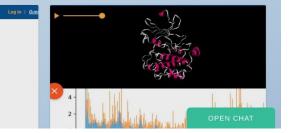
D1 - Mot present intro within \times D01 - with MD01 (Lie.) presents MM7/2000 + 0.0020 and $M1 - Mot present intro <math>\times$ D01 - with \times (Lies page 10), a present MM2/2000 + 0.0020 $M1 - Mot present introduced in the <math>\times$ D01 - with M0 (Lie.) present MM2/2000 + 0.0010 and $M2 - Mot present introduced introduced in the <math>\times$ D01 - with M0 (Lie.) present MM2/2000 + 0.0010 and $M2 - M00t present introduced in the <math>\times$ D01 - with M0 (Lie.) present MM2/2000 + 0.0010 and $M2 - M00t present introduced in the <math>\times$ D01 - with M0 (Lie.) presents MM2/2000 + 0.0010 and M2 - M00t present interval = 0.0010 + 0.0010 + 0.0010 + 0.0010



KDEEP

Predict the binding affinity of a set of ligands docked in a protein using a state-of-the-art neural network-based predictor

2.



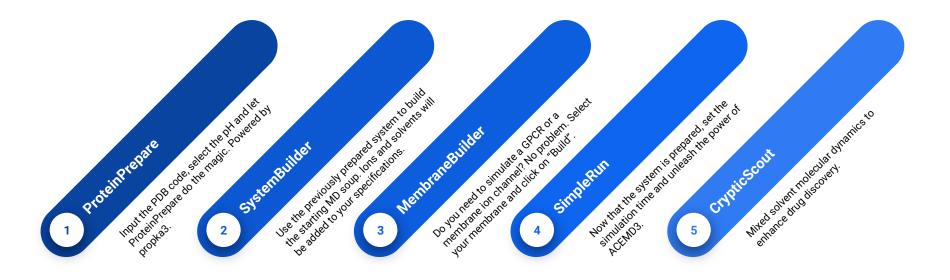
BINDSCOPE

Perform virtual screening of a library of compounds against your protein of interest using a neural-network-based predictor of binding

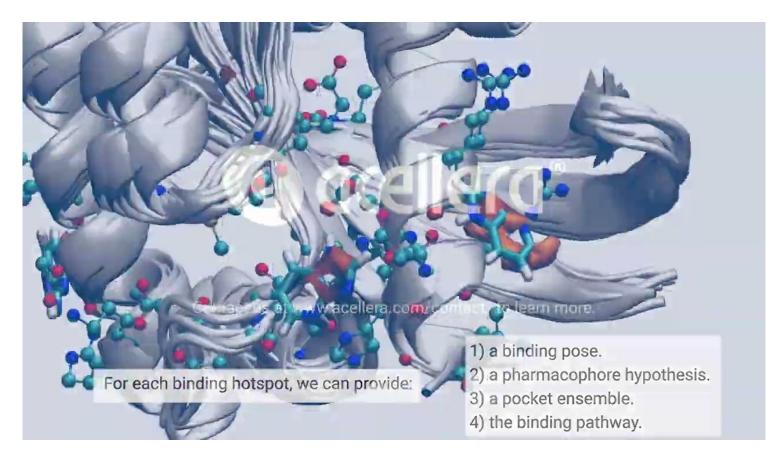
★★★★ (56) ■ 2817 GET STARTED REQUEST COLLABORATION

Tags: docking , neural networks

NEW: The DataCenter app

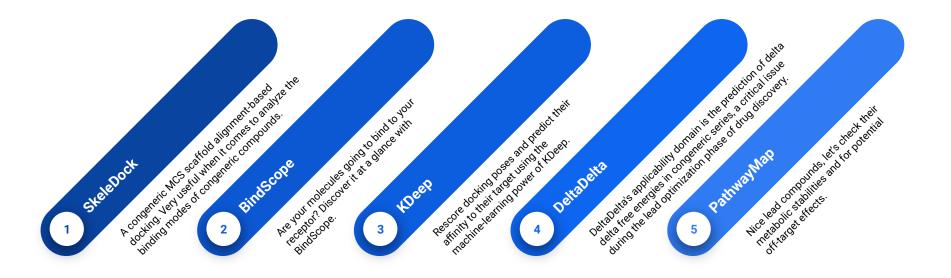

All your jobs, at a glance on the cloud.

2 •				Queue status: running 🌒 Log out Hello Acellera_Learning
► ADAPTIVESAMPLING	Q			크 Input
BINDSCOPE	DeltaDelta/models/158F8356 🗍			File to upload *
CRYPTICSCOUT		235.8KiB	5/7/2021, 3:18:48 PM	Choose File
	ProteinPrepare/output/9914B73D			Remote Path
DEEPSITE	PDB: 5TVN Chain: A pH: 7.4	115.9KiB	5/7/2021, 12:57:16 PM	
DELTADELTA	ProteinPrepare/output/0627A43B 📋 🖳			Comments
KDEEP	PDB: 5L87 Chain: A pH: 7.4	20.8KiB	5/7/2021, 12:56:14 PM	Tags (separated by ,)
KDEEPTRAINER	/webinar/MD_apps 🧻 🛃			rege (oppointed by)/
	5L87_ligand_parameterize	1.8KiB	5/7/2021, 9:56:05 AM	
	systembuilder/examples			SUBMIT
	Example files for systembuilder app	215.8KiB	3/29/2021, 11:32:32 AM	
	erameterize/examples			
	ample files for parameterize app	965.0B	3/29/2021, 11:32:31 AM	
	pathwaymap/examples			
	Example files for pathwaymap app	701.0B	3/29/2021, 11:32:31 AM	
	plexview/examples	20.01/210	0/00/0001 11:00:01 AM	OPEN CHAT

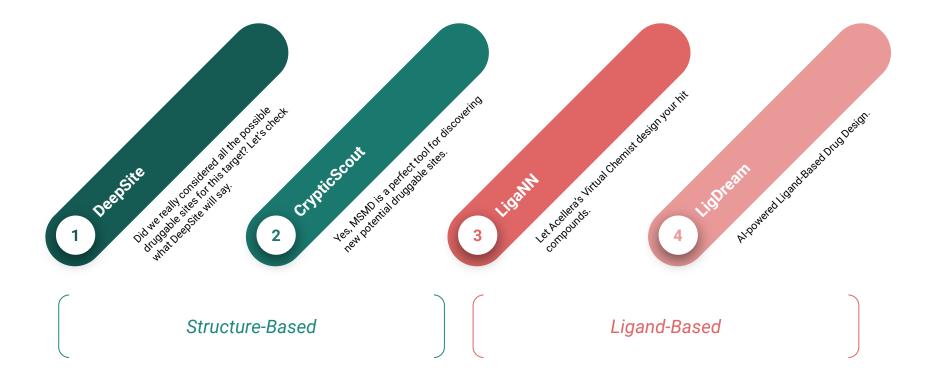

The workflows

0

1. From PDB to fully-simulated systems



CRYPTICSCOUT - Mixed solvent MD


Docking and HTVS

2. Screen a target against a library of selected molecules

This is Major Tom to Ground Control: exploring the chemical space

3. Explore new possibilities using Al-based methods

Ok, now let's see how it works...

Q&A

To pose a question, you can write your question in the "Questions" tab

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 675451

The e-Seminar series is run in collaboration with:

Thank you for participating!

...don't forget to fill in our feedback questionnaire...

Visit the CompBioMed website (<u>www.compbiomed.eu/training</u>) for a full recording of this and other e-Seminars, to download the slides and to keep updated on our upcoming trainings

