
e-Seminar #18
High Performance Containers?

6 October 2021

The e-Seminar will start
at 3pm CEST / 2pm BST

A Centre of Excellence in Computational Biomedicine

e-Seminar
series

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 675451

The e-Seminar series is
run in collaboration with:

https://insilicoworld.slack.co
m/archives/C0151M02TA4

Moderator:
Tim Weaving (UCL)

Presenter:
Michael Bareford (EPCC)

6 October 2021

Welcome!

e-Seminar
series

A Centre of Excellence in Computational Biomedicine

e-Seminar #18
High Performance Containers?

Moderator:
Tim Weaving (UCL)

Presenter:
Michael Bareford (EPCC)

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 675451

The e-Seminar series is
run in collaboration with:

https://insilicoworld.slack.co
m/archives/C0151M02TA4

HPC Containers?

Contents

1. Containers, Singularity and MPI

4

Contents

1. Containers, Singularity and MPI

2. GROMACS on ARCHER2 (4cab)

5

http://www.gromacs.org/

GROMACS is a molecular dynamics code. It is primarily designed for
biochemical molecules like proteins, lipids and nucleic acids that have
a lot of complicated bonded interactions.

http://www.gromacs.org/

Contents

1. Containers, Singularity and MPI

2. GROMACS on ARCHER2 (4cab)

3. The Container Factory

6

Contents

1. Containers, Singularity and MPI

2. GROMACS on ARCHER2 (4cab)

3. The Container Factory

4. GROMACS on Cirrus (CPU and GPU)

5. Conclusions...

7

What is a Container?

Containers can be thought of as lightweight virtualisations
• are less separate from the host compared to virtual machines
• share the kernel of the host OS
• are a combination of Linux namespaces and controlgroups (cgroups)

Container OS must be compatible with the host OS kernel
• for HPC, container OS must be based on Linux, e.g., Ubuntu

8

Containers are Lightweight Virtualisations

9

David Eyers, Sarah Stevens, Andy Turner and Jeremy Cohen
Containers for reproducible research

https://imperialcollegelondon.github.io/2020-07-13-Containers-Online/01-introduction/index.html

https://imperialcollegelondon.github.io/2020-07-13-Containers-Online/01-introduction/index.html

10

David Eyers, Sarah Stevens, Andy Turner and Jeremy Cohen
Containers for reproducible research

https://imperialcollegelondon.github.io/2020-07-13-Containers-Online/01-introduction/index.html

Containers and File Systems

Host FS Container FS

Singularity maps particular directories into the container by default,
e.g., $HOME, /etc/passwd, /tmp.

https://imperialcollegelondon.github.io/2020-07-13-Containers-Online/01-introduction/index.html

Why Singularity (and not Docker)?

Singularity images are handled as (SIF) files where an
image is instantiated as a container.

11

Why Singularity (and not Docker)?

Singularity images are handled as (SIF) files where an
image is instantiated as a container.

Singularity can be run entirely within “user space”: no
administrative-level privileges required to run containers on
a platform where Singularity has been installed.

12

Why Singularity (and not Docker)?

Singularity images are handled as (SIF) files where an
image is instantiated as a container.

Singularity can be run entirely within “user space”: no
administrative-level privileges required to run containers on
a platform where Singularity has been installed.
Singularity can support natively high-performance
interconnects, such as InfiniBand and Intel Omni-Path
Architecture (OPA).

Singularity is designed for parallel execution.

13

When does Singularity need root permissions?

Installation
• unless you configure with “–without-setuid” option

• all containers must be run within sandbox directories
• https://sylabs.io/guides/3.8/admin-guide/user_namespace.html - userns-limitations

14

https://sylabs.io/guides/3.8/admin-guide/user_namespace.html

When does Singularity need root permissions?

Installation
• unless you configure with “–without-setuid” option

• all containers must be run within sandbox directories
• https://sylabs.io/guides/3.8/admin-guide/user_namespace.html - userns-limitations

Building Containers
• Linux distros package software to be installed by root
• need a container “factory”: a Linux host where you have root permissions
• compiling code on one machine but running on another has challenges

a) less performant
b) compiler availability

15

https://sylabs.io/guides/3.8/admin-guide/user_namespace.html

Singularity and MPI

Ideally, we’d build the container such that it contains an MPI
implementation that is identical to the implementation
running on the host.
The MPI library running on the host and in the container
have to be at least ABI compatible*.

16

*The ABI compatibility initiative is an understanding between various
MPICH derived MPI implementations (MPICH, Intel MPI and Cray MPT)
to maintain runtime compatibility between each other.

Singularity and MPI

Ideally, we’d build the container so that it contains a version
of OpenMPI that is identical to the OpenMPI running on the
host.
The MPI library running on the host and in the container
have to be at least ABI compatible.

Singularity has two solutions for integrating the container
and the host with respect to MPI.

17

Singularity Hybrid Model

18

[host]$ mpirun ... singularity exec ... /path/to/container/sif /path/to/mpiapp ...

The MPI installation in the container links back to the MPI installation on the host.

Singularity Hybrid Model

19

[host]$ mpirun ... singularity exec ... /path/to/container/sif /path/to/mpiapp ...

Parallel Job Launcher (e.g., mpirun)
Process Management Daemon, ORTED

Singularity
Container and namespace environment
MPI application within container

MPI libraries
use PMI to connect back to ORTED

The MPI installation in the container links back to the MPI installation on the host.

Singularity Hybrid Model

20

[host]$ mpirun ... singularity exec ... /path/to/container/sif /path/to/mpiapp ...

Parallel Job Launcher (e.g., mpirun)
Process Management Daemon, ORTED

Singularity
Container and namespace environment
MPI application within container

MPI libraries
use PMI to connect back to ORTED

• Container MPI must be compatible with host MPI.
• Container MPI must be configured for host hardware if performance is critical.

The MPI installation in the container links back to the MPI installation on the host.

Singularity Bind Model

21

Parallel Job Launcher (e.g., mpirun)
Process Management Daemon (ORTED)

Singularity
Container (bound to host MPI)
MPI application (within container)

MPI libraries

No container MPI instead Singularity mounts/binds the host MPI in/to the container.

[host]$ mpirun ... singularity exec ... /path/to/container/sif /path/to/mpiapp ...

• MPI configuration should be optimal for host.
• Container easier to build (compared to hybrid)
• Container MPI app must be compatible with host MPI.

Singularity Bind Model

22

Parallel Job Launcher (e.g., mpirun)
Process Management Daemon (ORTED)

Singularity
Container (bound to host MPI)
MPI application (within container)

MPI libraries

No container MPI instead Singularity mounts/binds the host MPI in/to the container.

[host]$ mpirun ... singularity exec ... /path/to/container/sif /path/to/mpiapp ...

• MPI configuration should be optimal for host.
• Container easier to build (compared to hybrid)
• Container MPI app must be compatible with host MPI.

• Forthcoming examples use the bind model.

23

ARCHER2 (4cab)

HPE Cray EX
AMD (EPYC 7742)
128 cores per node

256 GB mem

HPE Slingshot
200 Gb/s

www.archer2.ac.uk

GROMACS 2021.1 on ARCHER2 4cab (strong scaling)

http://www.archer2.ac.uk/

24

ARCHER2 (4cab)

HPE Cray EX
AMD (EPYC 7742)
128 cores per node

256 GB mem

HPE Slingshot
200 Gb/s

www.archer2.ac.uk

GROMACS 2021.1 on ARCHER2 4cab (strong scaling)

http://www.archer2.ac.uk/

25

4000k atoms (protein in water) running on 64 ARCHER2 nodes (8192 cores).
Average performance was 9.47 ns per day for containerized GROMACS and
9.23 for baremetal.

These noticeable albeit small differences in performance are surprising given
that both code instances were built with the same libraries (Cray MPICH v8.0.16
and Cray FFTW v3.3.8.8) using GCC v10 compilers.

Possible that node assignment is a factor here: differences in compute node
performance outweigh any overhead due to containerization.

A Larger GROMACS Benchmark

Launching Containerized GROMACS (srun)

26

#!/bin/bash –login

#SBATCH -J sc_gromacs
...

setup environment variables

setup singularity bindpaths

setup singularity environment

...

srun --distribution=block:block --hint=nomultithread --chdir=${APP_RUN_PATH} \

singularity exec -B ${BIND_ARGS} --env-file ${APP_RUN_PATH}/env.sh ${SIF} \

${APP_EXE} ${APP_PARAMS} &>> ${APP_OUTPUT}

...

container
host

Launching Containerized GROMACS (singularity bindpaths)

27

#!/bin/bash –login

#SBATCH -J sc_gromacs
...

setup singularity bindpaths
APP_SCRIPTS_ROOT=/opt/scripts/app/gromacs/host/archer2
BIND_ARGS=`singularity exec ${SIF} cat ${APP_SCRIPTS_ROOT}/bindpaths.lst`
BIND_ARGS=${BIND_ARGS},/var/spool/slurmd/mpi_cray_shasta,${APP_RUN_ROOT}

...

srun --distribution=block:block --hint=nomultithread --chdir=${APP_RUN_PATH} \

singularity exec -B ${BIND_ARGS} --env-file ${APP_RUN_PATH}/env.sh ${SIF} \

${APP_EXE} ${APP_PARAMS} &>> ${APP_OUTPUT}

...

container
host

Launching Containerized GROMACS (singularity bindpaths)

28

#!/bin/bash –login

#SBATCH -J sc_gromacs
...

setup singularity bindpaths
APP_SCRIPTS_ROOT=/opt/scripts/app/gromacs/host/archer2
BIND_ARGS=`singularity exec ${SIF} cat ${APP_SCRIPTS_ROOT}/bindpaths.lst`
BIND_ARGS=${BIND_ARGS},/var/spool/slurmd/mpi_cray_shasta,${APP_RUN_ROOT}

...

srun --distribution=block:block --hint=nomultithread --chdir=${APP_RUN_PATH} \

singularity exec -B ${BIND_ARGS} --env-file ${APP_RUN_PATH}/env.sh ${SIF} \

${APP_EXE} ${APP_PARAMS} &>> ${APP_OUTPUT}

...

container
host

/work/y07/shared,/opt/cray,/usr/lib64:/usr/lib64/host,/etc/libibverbs.d

Launching Containerized GROMACS (singularity env)

29

#!/bin/bash –login

#SBATCH -J sc_gromacs
...

setup singularity environment
APP_SCRIPTS_ROOT=/opt/scripts/app/gromacs/host/archer2
singularity exec ${SIF} \

cat ${APP_SCRIPTS_ROOT}/cmpich8-ofi/gcc10/env.sh > ${APP_RUN_PATH}/env.sh

...

srun --distribution=block:block --hint=nomultithread --chdir=${APP_RUN_PATH} \

singularity exec -B ${BIND_ARGS} --env-file ${APP_RUN_PATH}/env.sh ${SIF} \

${APP_EXE} ${APP_PARAMS} &>> ${APP_OUTPUT}

...

container
host

Launching Containerized GROMACS (singularity env)

30

#!/bin/bash –login

#SBATCH -J sc_gromacs
...

setup singularity environment
APP_SCRIPTS_ROOT=/opt/scripts/app/gromacs/host/archer2
singularity exec ${SIF} \

cat ${APP_SCRIPTS_ROOT}/cmpich8-ofi/gcc10/env.sh > ${APP_RUN_PATH}/env.sh

sed -i -e 's/LD_LIBRARY_PATH/export SINGULARITYENV_LD_LIBRARY_PATH/g’ \
${APP_RUN_PATH}/env.sh

. ${APP_RUN_PATH}/env.sh

...

srun --distribution=block:block --hint=nomultithread --chdir=${APP_RUN_PATH} \

singularity exec -B ${BIND_ARGS} ${SIF} \

${APP_EXE} ${APP_PARAMS} &>> ${APP_OUTPUT}

...

container
host

Older versions of Singularity (e.g., v3.5.3) do not
support the “--env-file” option.

Launching Containerized GROMACS (singularity env)

31

/opt/scripts/app/gromacs/host/archer2/cmpich8-ofi/gcc10/env.sh

MPI_ROOT=/opt/cray/pe/mpich/8.0.16/ofi/gnu/9.1
...

FFTW_ROOT=/opt/cray/pe/fftw/3.3.8.8/x86_rome

LIBSCI_ROOT=/opt/cray/pe/libsci/20.10.1.2/GNU/9.1/x86_64
BLAS_LIBRARIES=${LIBSCI_ROOT}/lib/libsci_gnu_82_mpi_mp.so
LAPACK_LIBRARIES=${BLAS_LIBRARIES}

LD_LIBRARY_PATH=${FFTW_ROOT}/lib:${LIBSCI_ROOT}/lib:${MPI_ROOT}/lib: \
/opt/cray/pe/lib64:/opt/cray/libfabric/1.11.0.0.233/lib64: \
/usr/lib64/host:/usr/lib64/host/libibverbs: \
/lib/x86_64-linux-gnu:/.singularity.d/libs

...

container
host

Container Factory

A container factory can be setup as an instance within the
UoE's Research Cloud Service, Eleanor, based on
OpenStack.
https://www.ed.ac.uk/information-services/research-support/research-computing/ecdf/cloud

A user automatically has root access to any cloud instance
that is created from within their Eleanor account.

Why not setup a container factory on your personal laptop?
• establishing the factory as a cloud-based instance separates that

work from any details peculiar to an individual's machine
• the building of a factory can also be scripted allowing others to

create their own container factories

32

https://github.com/mbareford/container-factory

https://www.ed.ac.uk/information-services/research-support/research-computing/ecdf/cloud
https://github.com/mbareford/container-factory

Eleanor Horizon

33

Factory instance has 8 vCPUs, 16 GB RAM and 160 GB of disk space.

At present, factory OS is Ubuntu 20.04.2 and the container software
is (Sylabs) SingularityCE 3.8.3.

https://sylabs.io/guides/3.8/user-guide/

Creating the Initial Container Image

34

#!/bin/bash --login

bundle various scripts into a tar archive such that it is
accessible to the container definition file
...

sudo singularity build gromacs.sif.0 \
${HOME}/work/scripts/def/gromacs.def &> create.log

The making of an application-specific container takes place
within the factory builds folder, e.g., ~/work/builds/gromacs.

factory

Singularity Container Definition File
35

Bootstrap: library
From: ubuntu:20.04

...

%files
~/work/scripts/post_start.sh /opt/
~/work/scripts/post_stop.sh /opt/
~/work/builds/gromacs/scripts.tar.gz /opt/

...

%post
. /opt/post_start.sh

ubuntu-20.04.sh 10

miniconda.sh 3 4.8.3 38
conda_install.sh numpy,scipy,matplotlib

cmake.sh 3.18.4

source.sh gromacs 2021.1

. /opt/post_stop.sh

...

Boostrap: library
From: ubuntu:20.04

%setup...

%files...

%environment...

%post...

%runscript...

%startscript...

%test...

%labels...

%help...

https://sylabs.io/guides/3.8/user-guide/definition_files.html

factory

container

https://sylabs.io/guides/3.8/user-guide/definition_files.html

Container OS Script for Ubuntu 20.04
36

#!/bin/bash

echo "deb http://archive.ubuntu.com/ubuntu \
focal main restricted universe multiverse" > /etc/apt/sources.list

...

apt-get -y install build-essential uuid-dev libssl-dev libseccomp-dev \
libgpgme-dev zlib1g-dev iputils-ping squashfs-tools \
m4 lzip liblz4-1 wget curl git \
...

...

if [!z “${1}”]; then
apt-get -y install gcc-${1} g++-${1} gfortran-${1}
...

fi

ubuntu-20.04.sh 10
container

Container Source Script for GROMACS

37

#!/bin/bash

VERSION=$2
LABEL=$1
NAME=${LABEL}-${VERSION}
ROOT=/opt/app/${LABEL}

mkdir -p ${ROOT}
cd ${ROOT}

wget https://ftp.gromacs.org/${LABEL}/${NAME}.tar.gz
tar -xzf ${NAME}.tar.gz
rm ${NAME}.tar.gz

source.sh gromacs 2021.1
container

38

This GROMACS (http://www.gromacs.org/) container image file was created at the EPCC Container Factory,
an OpenStack Ubuntu 20.04 instance (ID 859596f3-6683-4951-82d4-f9e080c30d1f) hosted by the University
of Edinburgh Eleanor Research Cloud.

The container is based on Ubuntu 20.04 and features GCC 10.3.0, Miniconda3 4.8.3, CMake 3.18.4 and the
GROMACS source code version 2021.1.

See the container creation log at "/opt/logs/create.log.0" and the original definition file at
"/opt/scripts/def/gromacs.def".

Submission script templates can be found under "/opt/scripts/app/gromacs/host/". These script files are
named "submit.sh" and are organised by "<host name>/<MPI library>/<compiler>".

Container Provenance

singularity inspect -H gromacs.sif.0

singularity exec gromacs.sif.0 cat /opt/logs/create.log.0

The provenance history grows every time the containerized application is
built on (or targeted at) a HPC platform.

container
factory

/.singularity.d/runscript.help

Targeting the Container (the top-level command)

39

target.sh ~/work/scripts ${PWD} gromacs \
archer2 /work/z19/z19/mrb4cab/containers/build \
"2021.1 cmpich8-ofi gcc10"

host

factory

Targeting the Container (the top-level command)

40

target.sh ~/work/scripts ${PWD} gromacs \
archer2 /work/z19/z19/mrb4cab/containers/build \
"2021.1 cmpich8-ofi gcc10"

Recent versions of Singularity (>= 3.7.x) require that bind paths already exist within
the container before those same paths can be used with the –B option.

singularity exec -B ${BIND_ARGS} --writable ${SIF}.sandbox ...

host

factory

An example: for Cirrus, it is necessary to run a “target_init.sh” script that
creates the “/lustre/sw”, “/opt/hpe” and “/etc/libibverbs.d” file paths
within the container.

Targeting the Container (the target script)

41

target.sh

upload singularity image from factory to host
scp gromacs.sif.0 ...

run deployment script on host
...

download new singularity image from host to factory
scp archer2:${DEPLOY_PATH}/gromacs.sif.1 ...

host

factory

Targeting the Container (the target script)

42

target.sh

upload singularity image from factory to host
scp gromacs.sif.0 ...

run deployment script on host
DEPLOY_SCRIPT=~/work/scripts/app/gromacs/host/archer2/deploy.sh
DEPLOY_PATH=/work/z19/z19/mrb4cab/containers/build
DEPLOY_ARGS=“gromacs ${DEPLOY_PATH} 2021.1 cmpich8-ofi gcc10”

ssh archer2 “bash –ls” < ${DEPLOY_SCRIPT} ${DEPLOY_ARGS}

download new singularity image from host to factory
scp archer2:${DEPLOY_PATH}/gromacs.sif.1 ...

host

factory

43

deploy.sh

...

convert singularity image to sandbox
singularity build --sandbox ${SIF}.sandbox ${SIF}

build app within container sandbox
...

convert singularity sandbox back to image
singularity build --force ${SIF} ${SIF}.sandbox

Targeting the Container (the deploy script)

container

host

44

deploy.sh

...

convert singularity image to sandbox
singularity build --sandbox ${SIF}.sandbox ${SIF}

build app within container sandbox
singularity exec -B ${BIND_ARGS} --writable ${SIF}.sandbox

/opt/scripts/app/gromacs/build.sh 2021.1 cmpich8-ofi gcc10

convert singularity sandbox back to image
singularity build --force ${SIF} ${SIF}.sandbox

Targeting the Container (the deploy script)

container

host

EPCC Seminar 19th April 2017 45

Targeting the Container (the whole process)

target

build

deploy

factory

host

container (sandbox)

46

This GROMACS (http://www.gromacs.org/) container image file was created at the EPCC Container Factory,
an OpenStack Ubuntu 20.04 instance (ID 859596f3-6683-4951-82d4-f9e080c30d1f) hosted by the University
of Edinburgh Eleanor Research Cloud.

The container is based on Ubuntu 20.04 and features GCC 10.3.0, Miniconda3 4.8.3, CMake 3.18.4 and the
GROMACS source code version 2021.1.

See the container creation log at "/opt/logs/create.log.0" and the original definition file at
"/opt/scripts/def/gromacs.def".

Submission script templates can be found under "/opt/scripts/app/gromacs/host/". These script files are
named "submit.sh" and are organised by "<host name>/<MPI library>/<compiler>".

2021-09-25 12:39:53: Built gromacs 2021.1 (cmpich8-ofi-gcc10) on archer2 (/opt/logs/make.log.1)

2021-09-25 13:42:56: Built gromacs 2021.1 (ompi4-ofi-gcc10) on archer2 (/opt/logs/make.log.2)

2021-09-29 12:28:37: Built gromacs 2021.1 (mpt2-ib-gcc10) on cirrus (/opt/logs/make.log.3)

Container Provenance after Targeting

singularity inspect -H gromacs.sif.2

/.singularity.d/runscript.help

≈ 1.8 GB

47

deploy.sh

...

convert singularity image to sandbox
singularity build --sandbox ${SIF}.sandbox ${SIF}

copy mellanox drivers to container sandbox
LIBMLX_HOST=${SIF}.sandbox/lib/x86_64-linux-gnu/libmlx-cirrus
mkdir -p ${LIBMLX_HOST}
cp /lib64/libmlx* ${LIBMLX_HOST}/
cp /lib64/libib* ${LIBMLX_HOST}/
...

build app within container sandbox
...

convert singularity sandbox back to image
singularity build --force ${SIF} ${SIF}.sandbox

Targeting the Container (the Cirrus deploy script)

container

host

48

deploy.sh

...

convert singularity image to sandbox
singularity build --sandbox ${SIF}.sandbox ${SIF}

copy mellanox drivers to container sandbox
...

build app within container sandbox
BIND_ARGS=/lustre/sw:/opt/hpe:/etc/libibverbs.d
singularity exec -B ${BIND_ARGS} --no-home --writable ${SIF}.sandbox

/opt/scripts/app/${APP}/build.sh 2021.1 mpt2-ib gcc10

convert singularity sandbox back to image
singularity build --force ${SIF} ${SIF}.sandbox

container

host

Targeting the Container (the Cirrus deploy script)

50

Cirrus

SGI ICE XA
Intel Xeon (Broadwell)

36 cores per node
256 GB mem

Infiniband (FDR)
54.5 Gb/s

www.cirrus.ac.uk

GROMACS 2021.1 on Cirrus (strong scaling)

http://www.cirrus.ac.uk/

52

Cirrus GPU

SGI ICE XA
Intel Cascade Lake
40 cores per node

384 GB mem

4 GPUs per node
NVIDIA Tesla

(V100-SXM2-16GB)

Infiniband (FDR)
54.5 Gb/s

www.cirrus.ac.uk

GROMACS 2021.1 on Cirrus GPU (strong scaling)

srun ... singularity exec –nv ... ${SIF} ...

http://www.cirrus.ac.uk/

Conclusions

53

Similar results seen with CASTEP (materials modelling code) and
RAMSES (astrophysical code) on ARCHER2 4cab.

No significant difference between containerized and baremetal performance...
so far...

https://github.com/mbareford/container-factory

https://github.com/mbareford/container-factory

Conclusions

54

Code compilation done using GNU compiler installed within container.
What about compilers that might require a licence?

Is it possible to build using compiler on host (e.g., Cray or Intel), thereby
avoiding licence restrictions?

Similar results seen with CASTEP (materials modelling code) and
RAMSES (astrophysical code) on ARCHER2 4cab.

No significant difference between containerized and baremetal performance....
so far...

https://github.com/mbareford/container-factory

Other compilers?

https://github.com/mbareford/container-factory

Conclusions

55

Container images compatible with x86-64 (amd64) processor architecture only.
Separate image file necessary for ARM machines.

SingularityCE provide a remote build facility.

Similar results seen with CASTEP (materials modelling code) and
RAMSES (astrophysical code) on ARCHER2 4cab.

No significant difference between containerized and baremetal performance....
so far...

singularity build --remote --arch=arm64 ...

https://github.com/mbareford/container-factory

ARM Platform?

https://github.com/mbareford/container-factory

Conclusions

56

Is it possible to use an overlay as a sort of lens that when applied to a base image
allows a containerized app to run on a particular HPC platform?

This would make an interesting MSc project.

Similar results seen with CASTEP (materials modelling code) and
RAMSES (astrophysical code) on ARCHER2 4cab.

No significant difference between containerized and baremetal performance....
so far...

https://github.com/mbareford/container-factory

Persistent Overlays?

https://github.com/mbareford/container-factory

Q&A
To pose a question, you can write your question

in the “Questions” tab

A Centre of Excellence in Computational Biomedicine

e-Seminar
series

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 675451

The e-Seminar series is
run in collaboration with:

https://insilicoworld.slack.co
m/archives/C0151M02TA4

Thank you for participating!

…don’t forget to fill in our feedback
questionnaire…

Visit the CompBioMed website (www.compbiomed.eu/training)
for a full recording of this and other e-Seminars,

to download the slides
and to keep updated on our upcoming trainings

A Centre of Excellence in Computational Biomedicine

e-Seminar
series

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 675451

The e-Seminar series is
run in collaboration with:

https://insilicoworld.slack.co
m/archives/C0151M02TA4

http://www.compbiomed.eu/training

