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Outline

• Introduction to Image registration

• Quality measures/cost functions

• Introduction on pFIRE

• Activity in Compbiomed

• Refactoring and exascale

• Example of applications
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Where not specified, the Images in the slides are obtained under the by Creative Common 4 license or BSD
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Image Acquisition Modalities

• CT – Computerised Tomography. Based on X-ray 

images

• PET/SPECT Single-Photon Emission Computed 

tomography. Uses gamma rays and requires 

radioactive tracer

• MNR/MRI- Magnetic Nuclear Resonance

• Ultrasound. High frequency sound waves

SPECT

Ultrasound

MNR
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Multi Modality Registration

Diffusion Tensor Imaging Diffusion Weighted Imaging

MRICT-MRIPET-MRI



Image Registration

Multi modality image registration
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Need for Registration

• Multi modality registration (e.g. MRI-PET)

• Patient moving during session: CT/MRI scan

• Imaging of patients at different sessions

• Acquisition of time dependent series

• Morphological chances due patient growth

• Deformations due to disease evolution (e.g.)

• Scanner calibration and geometrical distortion

• Superposition of biomechanical modelling meshes



Image Registration

An example: CT of thorax
Fixed image Moved image

Image registration: finds the mathematical function 

that maps the moved image onto the reference image



Image Registration
An example: CT of thorax

Overlap fixed/moved image 

in RGB channels
Registration Map

The mapping function can be represented as a field of vectors joining corresponding 

points.



Image Registration

The source (or moved) image m is registered to the target (or 

fixed) image f.

We search for points in m which match points in f.

f(x,y,z) m(x’,y’,z’)

(x, y, z)

(x’, y’, z’)

Map



Image Registration

• In 3D the mapping function can be expressed in the form of 
3 functions.

• The mapping is one-to-one.
• u, v, w are displacement functions.

• For simplicity registration will be illustrated with 2D 
examples. Theory translates to 3D
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Special mappings

• Translation

• Rigid rotation with translation

• Affine

u = "1
v = "2

u = "1 + $ % cos ) + * % sin())
v = "2 − $ % sin ) + * % cos())

u = "11 + "12 % $ + "13 % y

v = "21 + "22 % $ + "23 % y



Non-linear Mapping

• The mapping function is computed on a grid of points (nodes)  

spaced D pixels apart.

• Same approach as in FEM analysis

• The ax ay are the values of the mapping at the grid nodes.

• Values of the mapping between nodes are obtained by 

interpolation with local basis functions.
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Image Registration

• An example of a local basis function is the bi/tri-linear interpolation 
function.

but other functions may be used (e.g. cubic, hermite ...) 

• Each of these functions is centred on each node of the grid, co-
ordinates xi,yi.

• Partition of unity holds
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The Mapping Function

Assuming image intensities are the same at corresponding points

# and + are functions of coordinates

, ', ) = - ',$ )$ = -( # ', ) + ', + ', ) + ))

'$ = # ', ) + '
)′ = + ', ) + )

The mapping function is

, ', ) - ',$ )$



The Registration Equation

Using the Taylor series expansion and rearranging the terms:

Note that the images become independent from u, v

Simplifying calculations

% &, ( − m &, ( = $
% , &, ( &' (,*

&( + &+ (,*
&( + .(&, () &'((,*)

&* + &+ ((,*)
&* +…

% &, ( = m &, ( + , &, ( &+ (,*
&( + .(&, () &+ ((,*)

&* +…

D.C. Barber et al. / Medical Image Analysis 11 (2007) 

The registration equation becomes:



The Registration Equation

Higher order terms are truncated so it is accurate only for small 

values of u, v.

Expanding the basis functions:

D.C. Barber et al. / Medical Image Analysis 11 (2007) 
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The equation is linear in coefficients aij
One equations per voxel



Finding Displacements Map

0 −2 = 34

Organizing the equation in Matrix form

The equation is usually overdetermined

• 0,2 are vectors of size N

• 3 is a matrix of N*2P elements

• 4 is a vector of size 2P

4 = 3#3 45 3# 0 −2



Solution issues

The problem is ill-posed and ill-conditioned because the matrix

3#3 56 7ℎ9 9:#"75;6 4 = 3#3 45 3# 0 −2

The solution is very sensitive to noise and a constraint is required.

A suitable constraint is imposing smoothness via Laplacian:

∇6#(', )), ∇6+(', ))= 
7!8
7"! +

7!8
7#!, 

7!9
7"! +

7!9
7#!

In discrete form the constraint is =4 = 0



Iterative Solution

0 −2
0 = 

3
?= "

4 = 3#3 + ?6=:= 45 3# 0 −2

The solution is

It derived form Taylor expansion so is accurate only 

for small displacements.

An Iterative procedure is required.

4; = 3#3 + ?6=:= 45 3# 0 −2
4< = 3#3 + ?6=:= 45 3# 0 −2(4;)
4= = .…
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Quality measures/Cost functions

• Sum of Squares differences for images based on intensity

• Mutual information

is currently considered a gold standard measure of image similarity. 

Cost functions measure the registration quality

0 = 1
!"#$%&

(2 − 3(4))'

56 7, 9 = 1
(,*

:+, ", ; % log(:+, ", ; )
:+ " % :, ;

(Studholme, et al, 1995 ) and (Collignon, ed al. 1995) in Information Proc Med Imaging
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(Barber DC, Hose R, J. Med. Eng & tech., 2005)

Sum of Squares

An intensity image can be converted to a binary image augmenting 

dimensionality:

> &, ( --> >b &, (, ?

Mapping between binary images is not unique and need extra constraints are 

needed (e.g. smoothness)

%b &, ( = mb x + ,, y + .

The Sum of Squared differences criterion is computationally efficient but it is sensitive 

intensity difference.

$b %, ' − mb x + ,, y + . = !
" , %, ' #$! %,'

#% + #(! %,'
#% + .(%, ') #)!(%,')

#' + #,!(%,')
#' +…
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Mutual Information

The MI of the image intensity values of corresponding voxel pairs in mapping is maximal 

if the images are geometrically aligned. 

Because no assumptions are made regarding the nature of the relation between the 

image intensities, this criterion is very general and powerful and can be applied 

automatically on multi-modality images.

Considered the golden standard.

Computationally expensive.

56 7, 9 = 1
(,*

:+, ", ; % log(:+, ", ; )
:+ " % :, ;

The Mutual information MI(A,B) measures the independence of images A and B as the 

distance between the joint distribution B/0 2, C and the distribution associated to the 

case of independent images (Kullbacl-Leibler measure).

(Maes, IEEE proc 2013)
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Histogram

AD "
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Joint Histogram

The Joint histogram of a 

perfectly registered image

is concentrated on a line

ℎ ", B

is the number of pixels 
having grey value a in 
image A and b in image B

Image A

Image B

a

b
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Joint Histogram

In this case image B 

is rotated of 15˚ 

The histogram 

pattern is dispersed 

(entropy)

0˚ 15˚



14/12/2021 © The University of Sheffield

28

Joint Histogram

0˚
5˚ 10˚

15˚ 25˚ 30˚

Entropy increases with rotation
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Mutual Information
Rotations

[1.3104, 0.3076, 0.2977,0.2864, 0.2808, 0.2757, 0.2737];

0˚ 5˚ 10˚ 15˚ 20˚ 25˚ 30˚

Mutual Information
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(Barber DC, Hose R, J. Med. Eng & tech., 2005)

pFIRE: 
Parallel Framework for Image REgistration

Derived by published work of RD Hose and D Barber

Iterative registration algorithm

Implements Mutual Information

Size of mesh D is initially image_dimension/4; iteration is repeated 

halving it and until mutual information does not decrease

Stopping criterion when displacements at iteration << voxel size

Computation of lambda depends on MI

Solver Krylov subspace implemented by PETSc

Parallel MPI implementation for HPC

Optimisations are implemented accounting for matrix sparsity 

and efficient of MPI distribution of computation
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CompBioMed
Application Incubation Program

Software Quality Assurance (ISO/IEC 25000, SQuaRE)
FAIR-SW (Findable, Accessible, Interoperable and Reusable)
Reproducibility
Reliability

Optimisation and Parallelisation
Cloud-HPC/HPC Deployment
Preparing for Exascale HPC (1016 FLOPS)

Deep Track

Fast Track

Optimise registration algorithm
Validation and feedback from users

Registration

Enhancement
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pFIRE
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Concurrent versioning system: http://github.com/INSIGNEO/pFIRE

Continuous Integration and deployment: TravisCI à Jenkins (MPI)

Documentation as code: ReadTheDocs Documentation + UML

Distributed as Source code, Docker and Singularity images

hub.docker.com/r/insigneopfire/pfire

Standard Data Formats: HDF5, DICOM, png, tiff  (replaces proprietary format)

(FAIR SW Research Data alliance 2021)

FAIR-SW and best practices

Findable, Accessible, Interoperable, Reproducible Software principles

http://github.com/INSIGNEO/pFIRE
https://hub.docker.com/r/insigneopfire/pfire
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C++ Dependencies complexity

Spack package manager
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Containerization experience

Docker: Ideal for workstation. Introduced the rootless mode for MPI

Singularity better support for MPI but need to run compatible MPI 
implementations between container and host

Evolving technology with limitations
Restrictions on the filesystem and user permissions
Singularity MPI hybrid needs tweaks for performance

pFIRE Container Architecture

pFIRE (Singularity)

Library dependencies Layer (Singularity)

OS Layer (Docker)
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Computational Performance

ShARC node specifications:

CPUs: 2 x Intel Xeon E5-2630 v3@2.4GHz
RAM: 64 GiB (4 GiB / core)

Hyperthreading disabled

3D CT Tibia



14/12/2021 © The University of Sheffield

37

Methodology in  Barber, D. C. 2005) 

Reference Kidney segmentation

Automatic segmentation

Segmentation via registration

Reference image Patient image

Registration

Map contour
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Registration Based Segmentation

Systolic flow Vessel ROI
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Spine Meshing
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https://doi.org/10.3389/fbioe.2014.00058
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CT2S pipeline including image registration
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The CT2S service 
provides an estimate 
of the strength of 
human bone, using 
non-invasive medical 
imaging



14/12/2021 © The University of Sheffield

41

University of Sheffield Team

Dr Alberto Marzo

Dr Andrew Narracott

Dr Xinshan Li

Dr Ivan Benemerito

Dr Paul Richmond

Dr Daniele Tartarini
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Q&A

To pose a question, you can write your question 

in the “Questions” tab
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Thank you for participating!

…don’t forget to fill in our feedback questionnaire…

Visit the CompBioMed website (www.compbiomed.eu/training)

for a full recording of this and other e-Seminars,

to download the slides 

and to keep updated on our upcoming trainings
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