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3 Definition and Acronyms  
 

Acronyms Definitions 

0/1/3D 0/1/3 Dimensional 

AGPL Affero General Public License 

ALCF Argonne Leadership Computing Facility 

ARF0/10 Absolute Risk of Fracture after 0/10 years 

BAC Binding Affinity Calculator 

BSC Barcelona Supercomputing Centre 

CoE Centre of Excellence 

CPU Central Processing Unit 

CSCS Swiss National Supercomputing Centre 

CT(2S) Compute Tomography (2 Strength) 

DICE Data Infrastructure for Capacity for EOSC 

DLB Dynamic Load Balancing 

DXA Dual-energy X-ray Absorptiometry 

EOSC European Open Science Cloud 

ESMACS Enhanced Sampling of Molecular dynamics with Approximation of 
Continuum Solvent 

EU European Union 

FAIR Findable, Accessible, Interoperable, Reusable 

FE Finite Element 

FPGA Field-programmable Gate Array 

GNN Graph Neural Network 

GPFS General Parallel File System 

GPGPU General-Purpose Graphics Processing Unit 

GPU Graphical Processing Unit 

HDF5 Hierarchical Data Format 

HPC High Performance Computing 

HPC High Performance Computing 

I/O Input/Output 

IT4I Information Technology for Innovations 

ITIL Information Technology Infrastructure Library 
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LRZ Leibniz Supercomputing Centre 

MD Molecular Dynamics 

MPI Message Passing Interface 

MTF Mean Time to Failure 

N-S Navier-Stokes 

NFS Network File System 

npFEM Np-Finite Element Method 

OLA Operation Level Agreement 

OLCF Oak Ridge Leadership Computing Facility 

PRACE Partnership for Advanced Computing in Europe 

PSNC Poznan Supercomputing Centre 

R&D Research & Development 

RAM Random Access Memory 

RDFaaS Research Data Facility as a Service 

SaaS Software as a Service 

SDK Software Development Kit 

ShARC Sheffield Advanced Research Computer 

SLA Service Level Agreement 

SM streaming multiprocessor 

SME Small and medium-sized enterprise 

TACC Texas Advanced Computing Center 

TIES Thermodynamic Integration with Enhanced Sampling 

Torch-CG Torch-Coarse Grained 

UCL University College London 

UEABS Unified European Applications Benchmark Suite 

UNIBO University of Bologna 

USA United States of American 

USFD University of Sheffield 

VM Virtual Machine 

VMD Visual Molecular Dynamics 

WP Work Package 
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4 Public Summary 
 
CompBioMed is a user-driven Centre of Excellence which serves users from academia, industry, 
and clinical practice in promoting and enhancing computational methods and simulation tools 
in the biomedical domain. The Centre of Excellence (CoE) is also working as contact point for our 
users’ community by acting as network and incubator centre to promote application usage and 
integration, through specialised training and support activities. The impact of the CoE within the 
Computational Biomedicine user community is critically dependent on the ability of the CoE to 
translate the work done within the consortium partners into tangible and usable services which 
can help to bring value to the end users. 
 
Since the inception of CompBioMed2, leveraging the simulation community that has grown out 
of CompBioMed1, we have built several core services which are maintained and offered to our 
userbase. These services have been designed to support the needs of the biomedical community 
in delivering state of the art solutions, access to training material and efficient use of high-
performance and high-throughput infrastructures. 
 
This deliverable describes the compute and data services developed and delivered within the 
project. The first part of the document focuses on the applications services available through 
the project partners, providing an overview of technical characteristics and infrastructure usage. 
In the second part of the document, we describe the tools and support activities we have been 
working on in these first 24 months of the project. The goal is to help our partners to deliver 
mature biomedical solutions and performance improvement, future proofing of biomedical 
applications, preparing strategies and best practice to exploit current multi-petaflop and 
emerging exascale resources. 
  

5 Introduction 
 
WP4 “Operation and Service” main objective is to coordinate and support the delivery of the 
computational and data-oriented services developed within the project. The WP coordinates 
the development of the project service portfolio and the service management system, which 
will serve to enrich the service offering with more community-driven biomedical solutions. The 
WP has also been designed to support the computational and data intensive applications and 
workflows within the project, by analysing the technical requirement of our user community 
and providing flexible and secure access to the appropriate compute and data infrastructures. 
In WP4 we optimised existing applications and Workflows, including provision of performance 
improvements to current applications which are not able to scale up to large HPC systems, 
parallelizing currently serial codes or optimise the resource usage for large scale workflows. In 
collaboration with WP2, WP3 and WP5 we are working to identify suitable applications that can 
be extended and ported to novel architectures to improve performances and user experience 
with focus in particular on exascale systems and hardware/software co-design principles. 
 
In WP4 we work mainly in three areas: 
 

● Service management: To support the development and delivery of compute and data 
services focused on the requirements of the biomedical community. 
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● Applications support and performance enhancement: To provide support in both 
porting of application to new architectures and hardware (T4.6) as well as supporting 
the development of efficient algorithms to fully exploit HPC systems (T4.3, T4.2). The 
WP has provided support in adapting biomedical workflows to run at full scale on large 
systems (T4.4) and the production of benchmark and scalability results for the flagship 
applications developed within the project. 
 

● Relation with EU initiatives coordination: To strengthen the connections with existing 
European e-infrastructures (e.g: PRACE, EOSC, etc.) and maintain the collaboration with 
other CoE and international projects. 

 
We have endeavoured to bring together HPC experts and core developers to work on the 
optimisation of existing applications and workflows (evaluated in collaboration with WP2 and 
WP5), providing technical support on parallel architectures and algorithm design. This includes 
parallelizing current serial codes and enhancing the e-infrastructure usage of already parallel 
applications and the tools used to run large computational campaigns (e.g.: middleware, data 
management tools). 
 
Within the scope of the project, we define a service as “a way to provide value to customers 
through bringing about results that they want to achieve.” 
 
Already from phase 1, CompBioMed has continuously worked to provide value to end-users by 
offering different types of services to the biomedical community. Acting mainly as a federated 
service provider the Centre has supported computational biomedicine users with the expertise 
and resources coming from the consortium’s Core and Associate Partners. 
 
The consortium provide access to several services developed and maintained within the project:  
 

1. CompBioMed Training Portal 
2. CompBioMed Scalability Support 
3. CompBioMed Software Hub 
4. CompBioMed Visitor Programme 
5. CompBioMed HPC Allocations 
6. CompBioMed Incubator Registry 

 
These are available through the “Services” section of the CompBioMed website 
(www.compbiomed.eu). Since they have been extensively described in D4.1, this section will 
focus on the update we made within the CompBioMed Scalability support service, and on the 
newly created internal helpdesk, which was anticipated in the previous deliverable.  
 
In this deliverable we focus on the CompBioMed compute and data services at the halfway point 
of the project’s lifetime. In section 6 we provide a technical description of the CompBioMed 
applications with details of their components, access mechanism used and e-infrastructure 
usage. These are the main components of the CompBioMed Software Hub, through which users 
can get to know and access the software developed and maintained by the consortium partners. 
Section 7 presents an overview of the services developed to support the applications service 
portfolio. The section focuses on the infrastructures access services provided within the project, 
the work done towards testing and benchmarking community codes and on new tools and 
working environments (i.e., middleware, resources provisioning self-service tools, virtual 
analytics workspaces and secure access management) to support our user community needs in 
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terms of security, compute and data access. Section 8 describes the scope and structure of the 
scalability support service, through which we aim to provide technical support on parallel 
architectures and algorithm design, as well as help users in scaling sequential applications or 
improve the performances of existing parallel codes.  
 
This deliverable complements the information on the CompBioMed compute services provided 
with WP2 deliverable D2.2 “Second Report on Fast Track Application Readiness”, where we 
presented the advancements in scientific results obtained using CompBioMed compute services, 
and the collection of resources developed to facilitate the adoption of the codes by external 
users.  
 
A further view on the external user experience for the different compute services, as well as on 
codes usability, robustness and efficiency, will be presented in D5.2 “Advanced Report on 
Biomedical Applications” as part of the work done within WP5. 
 
These three deliverables provide an all-around view on the different services and the plans we 
have in the project to continue supporting and delivering the computational solutions developed 
within the project. 
 

6 Applications Services 
 
The CompBioMed Software Hub addresses the needs of the computational biomedicine 
research community, which can use the Hub to access the applications services developed, 
aggregated and coordinated by CompBioMed. In this section, we describe the applications 
developed and maintained by the consortium partners at 24 months since the start of the 
project. Each section provides a description of the applications, the technical specifications for 
each of the codes, and an analysis of the main developments achieved so far in both 
infrastructure usage and performance optimisation. 

6.1 HemeLB  
Application description 
HemeLB is a 3D macroscopic blood flow simulation tool that has been specifically optimized to 
efficiently solve the large and sparse geometries characteristic of vascular geometries. It has 
been used to study flow in aneurysms, retinal networks, and drug delivery among many other 
cases. Target users will be trying to understand blood flow in complex vascular domains where 
3D knowledge of the geometry is critical to solving their problem. HemeLB is open-source and 
available for free download from Github under the LGPL-3.0 License [1]. Build instructions are 
provided either from the repository itself (via the ReadMe file or using a provided build script) 
or via the HemeLB website. External users will need to compile the code themselves on their 
target machine. HemeLB has been successfully built on a wide variety of HPC systems including 
ARCHER2, SuperMUC-NG, Summit, and Blue Waters. 
 
Technical specifications  
HemeLB is written in C++ and uses MPI to distribute work amongst multiple processors. It has 
been designed to conduct a single run of a flow problem in a monolithic format. Aside from a 
compiler and MPI library, HemeLB comes packaged with the dependencies necessary for 
building and running the code. One dependency (CTemplate) currently requires a version of 
Python2 for successful compilation, however we are in the process of transferring this to 
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Python3 as it becomes essential on different HPC platforms. Versions of HemeLB that are 
accelerated by GPUs are currently being developed. Those currently/soon-to-become available 
utilise CUDA to enable acceleration on NVIDIA GPUs. A port, using HIP to enable execution on 
AMD GPUs, has been conducted and is currently being tested. As a rule of thumb, input files and 
simulation data scale linearly with the number of sites being simulated. Execution may require 
available memory of around 2kB/lattice site. 
 
HemeLB geometries can be developed using the tools available at https://github.com/UCL-
CCS/HemePure_tools, whilst post-processing of results generally makes use of HemeXtract 
(https://github.com/UCL-CCS/hemeXtract) to convert the binary output files to a human 
readable format. These can then be viewed with scientific visualization software such as 
ParaView. 
 
CompBioMed partners UCL and LRZ have worked on video [3] visualising the blood flow in the 
human forearm and how this was created with the HemeLB application. This work will be shown 
as part of the "Scientific Visualization & Data Analytics Showcase" [4] at this year's 
supercomputing conference, SC21, and has been shortlisted as one of five best scientific 
visualisations in the conference programme. 
 
HPC usage and parallel performance 
Simulation of blood flow in the full human vasculature is a challenging task for any 
computational approach. Although 1D solvers can do this with less computational resources 
than a 3D model it does not provide the same level of fundamental flow details and 
personalization of the flow domain. For the development of virtual human simulations, high 
fidelity 3D simulations – such as those generated by HemeLB – will be crucial to both medical 
and scientific understanding. The efficient generation of such simulations will make the use of 
HPC essential, this is the only way that flow of physiologically relevant timeframes can be 
created within a reasonable simulation time. At the full-human scale, where a high-resolution 
decomposition of the vasculature could require more than 50 billion lattice sites, such 
simulations can demand the resources of an exascale machine. 
 
HemeLB manifests excellent strong scaling results on a number of HPC platforms. Here we 
highlight the performance of the CPU version of the code on SuperMUC-NG (LRZ, Germany) and 
the NVIDIA GPU version on Summit (USA) – machines currently at #17 and #2, respectively, on 
the Top500 list [2]. To compare GPU and CPU results, we convert the number of GPUs to CPU 
equivalent by using the number of streaming multiprocessors available on the chip – this is the 
methodology used by the Top500 list. In Annex 11.1.1 we present our current observed strong 
scaling behaviour with HemeLB. These have been obtained using a 10 billion site circle of Willis 
domain that represents the complexity of domain used in production jobs. The data in Annex 
11.1.1 has been scaled to cores for the CPU code and SMs (i.e., CPU core equivalent) for the GPU 
data. From these plots, it can be seen that HemeLB demonstrates very good strong scaling 
behaviour to the full production partition of SuperMUC-NG (approx. 310,000 CPU cores, the 
fastest CPU only machine in Europe). On Summit, the use of up to 20,000 GPUs allows this to be 
extended up to approx. 1.5 million SMs. In further testing, we have been able to extend 
execution with acceptable performance up to 2 million SMs. These last two figures demonstrate 
that HemeLB is already able to effectively run at around the maximum day-to-day usage levels 
expected of an exascale machine.  
 
Within a collaboration with FocusCOE (https://www.hpccoe.eu/) UCL has also developed a 
dedicated training website [5] for users to get to support with the deployment and 
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benchmarking of HemeLB. The training is designed with the purpose of acquiring performance 
data and scaling information on emerging exascale architectures. 
 
HemeLB uses MPI in a master-worker format to manage communications across the assigned 
resources. Here a single rank is dedicated to managing the simulation whilst the remainder are 
devoted to conducting the computation throughout the domain. Communication between ranks 
occurs when a lattice site’s neighbours are being computed on a separate rank. MPI 
communications have been organized to mask this as much as possible. Data input all occurs 
within the initialization phase of the simulation, this can correspond to a significant quantity of 
data – approximately 1.3kB/site. Data output occurs at a frequency indicated by the user in the 
input file, this output will typically require 64 bytes/site (though variable dependent on actual 
output requested) and this is stored in a compressed binary format. Checkpoint files can also be 
saved in this manner if required. For the single component version of HemeLB discussed here, 
no temporary files are written to aid simulation completion. 
 
Within CompBioMed2, we have achieved a number of technical developments for the HemeLB 
code and are continuing to work towards several more. The port to NVIDIA GPUs is the primary 
exemplar of this, resulting in the strong scaling results presented above. Efforts within 
CompBioMed2 have also developed a port for AMD GPUs and the performance of this is 
currently being evaluated. Within the next 12 months, it is possible that similar work will be 
undertaken to enable use on Intel GPUs (such as being used in LRZ’s SuperMUC-NG Phase 2). 
Whilst platform-agnostic programming is an ideal goal, it will take time before a consensus is 
reached on how this is to be best achieved for GPUs (if possible). Further optimization work 
(current and ongoing) with LRZ has been focused on improving the performance of HemeLB on 
SuperMUC-NG. This has included an update of the intrinsics used to accelerate key 
computational kernels within the code – this effort has demonstrated improvements to the 
parallel efficiency of the code and we are currently working to evaluate the large-scale 
performance of these. Ongoing work will further look at how memory management could be 
optimized for this machine. Whilst all of these could be described as co-design, further explicit 
co-design efforts are currently in the planning stages for the possible use of HemeLB as 
benchmark code for testing, evaluating and commissioning new hardware such as NVIDIA’s GPU 
hardware development kits (at UCL), SuperMUC-NG Phase 2 (at LRZ) and the upcoming 
European Processor (with ATOS). 
 
As part of the work in CompBioMed, EPCC have developed a service called the HemeLB High 
Performance Offload service (Hoff, https://github.com/EPCCed/hemelb-hoff) which allows to 
offloads HemeLB simulations to a remote HPC system, using a set of REST endpoints for 
submitting and managing computational jobs on remote resources. With the Hoff, existing 
Portals or existing SaaS offerings are able to upload its input files to a server connected to the 
HPC system where the simulation will be executed. After copying the input data sets onto the 
target HPC system, the Hoff schedule and execute the simulations, and, once completed, notify 
the user and allow for retrieve of the output data. The tool is currently interfaced between a 
portal, PolNet, which extents the functionality of HemeLB, with the Cirrus HPC system, and EPCC 
is currently working to extend its functionalities to work with the SLURM scheduling system. 
 
Cited references: 
[1] https://github.com/hemelb-codes/hemelb/blob/main/LICENSE 
[2] https://www.top500.org/lists/top500/list/2021/06/ 
[3] https://youtu.be/Sd8_cujMP_4 
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[4] https://sc21.supercomputing.org/program/posters/scientific-visualization-data-analytics-
showcase/ 
[5] https://hemelb-dev.github.io/HemeLB-Carpentries/ 
 

6.2 Alya 
Application description 
Alya aims to simulate complex multi-physics / multi-scale coupled problems at tissue, organ, and 
system level. The idea is that of a "Virtual Patient", in which we can model the patient in health, 
in disease and under treatment. In the context of CompBioMed2, we are focused on the 
cardiovascular system. 
So far, the code is being used by colleagues from academia. In its raw version and without any 
kind of graphical user interface, the code is not friendly and due to the complexity of the 
problems we are dealing with, only an expert user can setup, run, and analyse the simulations. 
In 2018 we created the spinoff ELEM Biotech (an Associate Partner of CompBioMed) to speed 
up the technology transfer to biomedical stakeholders and one of its missions is making the code 
more usable by non-expert users, including a cloud deployment and an ad-hoc biomedical user 
interface. Thanks to ELEM action, we are extending the access to Alya to users with biomedical 
knowledge, such as engineers from device manufacturing or pharmaceutical companies. 
 
The code has different types of licences, depending on the case: 

• Non-commercial available source 
• Non-commercial cloud SaaS  
• Open source for a limited version (only fluid mechanics) 

 
Technical specifications  
The code is written in modern Fortran language, with some user tools in Python and Perl. The 
memory is dynamically allocated and strongly depends on the problem solved. The code has no 
external third-party high-level library dependency, the only dependencies are of low-level type, 
such as MPI. The code has been compiled in several platforms such as ARM, Intel, NVIDIA or IBM 
Power processors.  
 
The parallelization strategy is a hybrid one, MPI+OpenMP. Part of the code has been ported to 
GPUs to offload solvers or matrix assembly. The code has examples of use as monolithic, coupled 
and in ensembles and for replica computing. Being portable and efficient in both large and small 
architectures, it has records on different running scenarios.  
 
The code relies mostly on internal developed tools. There is no need for containers or workflow 
managers. Several pre-processing tools have been used in combination with Alya: Ansa, 
IcemCFD, GMesh or GiD. As post-processing tools, typical used applications include ParaView, 
VisIt, Ensight or GiD.  
 
HPC usage and parallel performance 
The code is used in complex very large, coupled problems and it is designed and continuously 
improved to run efficiently in parallel for coupled problems. If not carefully done, coupling can 
strongly punish performance: a code can be very efficient solving a fluid or a solid mechanics 
problem, but this does not preclude that a fluid-solid interaction case could become extremely 
inefficient. We use a multiple instance point-to-point MPI communication strategy for coupled 
problems, allowing us to run the individual instances in different architectures with a heavy 
communication pattern. We also combine this with load balancing schemes by linking Alya to 
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the BSC's DLB tool for dynamic load balance. For all this, the use of HPC combined with an 
efficient yet very advanced programming and running strategy becomes important.  
 
The strong scalability of Alya has been established in PRACE, Alya being part of the Unified 
European Applications Benchmark Suite (UEABS), as well as through continuous testing on the 
main supercomputers in Europe and the US. The continuous development and improvement of 
our HPC capabilities have been carried on since the early days of the Alya Development Team, 
in 2005, through several collaboration projects. Since then, we have focused on all the aspects 
of the problem, and lately with the exascale horizon in sight. Our current strategy is a tick-tock 
model, in which we dedicate alternative efforts, on one hand, efficiency at system level in large 
core counts (weak/strong scalability, communication bottlenecks, partition algorithms, system 
level load balance, etc.), and, on the other hand, efficiency at node level (vectorization, hybrid 
models, porting to new architectures, co-execution, node level load balance, etc.). Of course, on 
the road to exascale all levels are accountable. All phases, when completed, contribute to a 
general strategy. On top of that, for a few years, we have been working on combining Machine 
Learning with modelling and simulation, all in the context of High Performance Computing and 
exascale. At this moment, according to our long-term development plan, we are finishing one of 
our node level efficiency phases. 
 
As mentioned above, the CompBioMed2 applications which Alya is tackling are all large and 
tightly coupled. Alya consists of many different modules, each accounting for different physics 
and solving for a particular set of equations. Some of them, including the one of interest in CoE 
RAISE (https://www.coe-raise.eu/), have been ported to GPGPUs using OpenACC pragmas. In 
addition, a co-execution model has been developed to enhance the resources usage. The idea 
of co-execution is to have the same computational kernels running at the same time on both 
CPUs and GPGPUs and therefore to fully exploit hardware heterogeneity [1,2]. Some of the 
kernels of Alya have also been ported to FPGAs in the context of the LEGaTO European project 
(https://legato-project.eu/).  
 
Alya is general purpose engineering application used and developed within several CoEs working 
in different scientific domains. Since its conception in 2004, Alya has being designed and 
extended using advanced High Performance Computing programming techniques to solve 
coupled problems on supercomputers efficiently, making it one of the most promising European 
scientific application which is expected to be taken to the exascale. Several co-design activities 
have been focusing around Alya in dedicated EU projects such as the European Processor 
Initiative (EPI, https://www.european-processor-initiative.eu/) and the Excellerat CoE 
(https://www.excellerat.eu/) where the code is one of the main supported applications. From a 
co-design prospective, Alya can indeed efficiently exploit both latency-oriented CPUs and 
throughput-oriented GPUs. Those are the two parallelization models required on the upcoming 
pre-Exascale EU supercomputers. The portability to GPUs has implications both in the 
programming language and on the data structuring. It is being carried progressively in the 
distinct modules of Alya following a common strategy. In particular, the N-S solver, critically used 
in many biomedical applications, was completely ported to GPUs and run on a POWER9+NVIDIA 
system [1] and we aim to port all the modules involved in multiphase combustion simulations 
to GPUs within The Center of Excellence in Combustion (CoEC, https://coec-project.eu/). 
 
Additionally, it is worth remarking that partner BSC is leading the MareNostrum Exascale 
Experimental Project (MEEP, https://meep-project.eu/) which is a flexible FPGA-based 
emulation platform that will explore hardware/software co-design for Exascale Supercomputers 
and other hardware targets, based on European-developed IP (Intellectual Property). Within this 
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project, BSC is working to foresee the behaviour of Alya's computational kernels in FPGA-based 
emulators of future exascale computers, especially with those architectures proposed by the EPI 
initiative. 
 
Cited references: 
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M. Vázquez, and G. Oyarzun. Heterogeneous CPU/GPU co-execution of CFD simulations on the 
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[2] G. Oyarzun, M. Avila, R. Borrell, G. Houzeaux, O. Lehmkuhl, H. Owen. Explicit/Implicit 
Navier-Stokes Solver on CPU/GPU heterogeneous Supercomputers, PARCFD2020, Paris, May 
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6.3 Palabos 
Application description 
Palabos is a general software library for computational fluid dynamics using the lattice 
Boltzmann method. In biomedical research, the main domains of applications are 
cardiovascular, including the simulation of blood flow in arteries, the investigation of the effect 
of medical devices such as stents, and cell-level blood simulations to investigate fundamental 
blood properties. Principal target users are researchers in the biomedical domain and R&D 
developing new medical devices. 
 
The code is open-source and is distributed under the terms of the software license AGPLv3. It 
can be downloaded from the Web site www.palabos.unige.ch and is straightforward to install, 
as it depends on no external library (except for an implementation of the MPI communication 
layer). 
 
Technical specifications  
The Palabos library is written fully in C++ and runs on CPU clusters. It is parallelized with MPI for 
multi-core CPUs and for CPU clusters, using one MPI task per core (single-run parallelism). 
Typical memory requirements are 2 GB per core. Pre- and post-processing capabilities are built-
in to the Palabos software library. A recommended data visualization tool for Palabos output is 
the ParaView software.  
 
HPC usage and parallel performance 
The need for HPC is particularly motivated in the field of cell-level blood simulations. Here, an 
exascale or pre-exascale system is required to simulate a macroscopically significant number of 
blood cells (of the order of 1 billion cells) while maintaining a detailed description of the physics 
of each cell. Cell-level simulations are achieved with the Palabos-npFEM coupling. A multi-scale 
description, i.e., simulation of a large blood volume (a section of an artery) while maintaining 
the cell-level description, is achieved in the limit of weak scaling, as the blood volume (and the 
total number of blood cells) scales with the number of available nodes. 
 
The figure in Annex 11.1.2 reports the scaling behaviour of the Palabos-npFEM code, as it 
simulates a coupled fluid – Red Blood Cell system on a heterogeneous platform (fluid on CPU, 
blood cells on GPU). The graph shows weak scaling, and the size of the simulated blood volume 
(in micro-meters) is indicated for each data point. 
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Current research focuses on scaling the Palabos-npFEM code to a larger number of nodes, and 
on porting the full Palabos library to GPU for more efficient large-scale simulations of arterial 
flows. Porting of the Palabos library to single GPU has been achieved. Current and future efforts 
focus on multi-GPU performance of the full Palabos library. 
 
The multi-GPU performance of Palabos was among others improved by participating in the 
hackathon Eurohack21 in September 2021, organized by the Swiss supercomputing centre CSCS. 
On this occasion, an exchange between the Palabos development team and HPC experts from 
CSCS and from NVIDIA took place. This allowed the Palabos team to make suggestions for 
extensions to the NVIDIA HPC SDK that would allow HPC codes like the Palabos one to be ported 
to an exascale capable machine more efficiently. 

6.4 HemoCell 
Application description 
HemoCell is a parallel computing framework for simulation of dense deformable capsule 
suspensions, with special emphasis on blood flows and blood related vesicles (cells). The library 
implements validated mechanical models for red blood cells and can reproduce emergent 
transport characteristics of such complex cellular systems. HemoCell can handle large simulation 
domains and high shear-rate flows providing a virtual environment to evaluate a wide palette of 
microfluidic scenarios.  
 
The code targets academic and industrial users with an interest in simulating dense cellular 
suspensions, where the users typically have a special interest in blood-related flows. The users' 
applications can include a broad range of applications, e.g., understanding experimental 
observations using numerical simulation, validation based on experimental data, or investigating 
numerical aspects of HemoCell, such as performance analysis, scalability, and load-balancing. 
 
The source code of HemoCell is provided as an open-source library 
(https://github.com/UvaCsl/HemoCell) under the AGPL license. The source code comes with a 
wide range of illustrative examples and corresponding documentation. HemoCell is easy to 
compile and runs on a variety of HPC systems (e.g., Cartesius (SURF), SuperMUC (LRZ), 
MareNostrum (BSC), etc.), where helper scripts are included to define the needed compilation 
environments. So far, HemoCell is not yet provided by default on any HPC system. 

 
Technical specifications  
HemoCell is implemented in C/C++ with parallelism achieved through MPI. The library provides 
the cellular mechanics and cell transport on top of the fluid simulations using the lattice 
Boltzmann methods implemented by the underlying Palabos library (also written in C/C++ and 
publicly available). Currently, the implementation only exploits CPU nodes on HPC systems, i.e., 
no accelerated hardware is (yet) used. Typically, simulations run with a single MPI thread per 
core available in the allocated job on the HPC system.  
 
Parallelism is then managed through a decomposition of the simulated domain. The underlying 
fluid field is decomposed in blocks of (nearly) identical size. Each of these so-called atomic blocks 
are distributed across the available MPI threads, where typical communication patterns are 
implemented to exchange data at the interfaces. The suspended cells are distributed based on 
their location to the corresponding atomic blocks. As the simulation progresses, cells move 
through the domain and need to be redistributed to different MPI threads, potentially causing 
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a load imbalance if cells accumulate in parts of the domain. To counteract such imbalance, 
HemoCell provides methods to dynamically resize the atomic blocks in addition to the original 
static domain decomposition.  
 
HemoCell has few dependencies and to compile the library a user only requires a C/C++ 
compiler, MPI libraries, and a build system (e.g. CMake and Make). After compilation, the user 
can link with HDF5 to enable output of raw data. For pre-processing, HemoCell comes bundled 
with a cell packer that generates initial red blood cell positionings for various simulation domain. 
For post-processing, Python scripts are available enabling visualisation using ParaView or 
rendering through Blender.  
 
HPC usage and parallel performance 
The need for HPC is driven by the desire to simulate ever increasing blood volumes. This requires 
larger simulation domains as well as larger embedded vesicle counts. Additionally, to recreate 
complete experimental setups, the simulations need to simulate longer time frames. This 
combination requires large domains, many cells, and many iterations, requiring modern HPC 
systems to find solutions in practical run times.  
 
Ongoing research aims to investigate and improve the parallel performance of HemoCell. 
Current measurements show reasonable scaling performance of both fluid and cellular parts 
with an efficiency of about 70% (as tested on Cartesius up to 512 nodes (x24 cores)). In the 
coming years, we aim to increase this scaling efficiency and reduce the overall runtime by 
providing support for accelerated hardware (GPU). Simultaneously, advanced load-balancing 
methods are being developed to maintain uniform load on heterogenous hardware and 
continuously changing cell distributions. Furthermore, we aim to extend HemoCell’s features to 
align with future experiments by including a variety of new boundary conditions and cell 
behaviours. 
 
Multiple numerical examples are provided that can act as a “proxy” problem. These examples 
have known outcome and can be used as benchmark references when implementing support 
for new hardware, load-balancing, or parallelisation strategies. Moreover, a dedicated example 
is provided that is used exclusively for performance measurements (weak and strong scaling), 
which can be recreated by users on a variety of HPC environments. 
 

6.5 Binding Affinity Calculator 
Application description 
BAC or Binding Affinity Calculator encompasses two highly related methodologies. These two 
methodologies are Thermodynamic Integration with Enhanced Sampling (TIES) [1] and 
Enhanced Sampling of Molecular dynamics with Approximation of Continuum Solvent (ESMACS) 
[2]. Centrally both these methods make use of ensembles of molecular dynamics (MD) 
simulations to control for the inherently chaotic nature of the trajectories MD produces. The 
trajectories collected can be used to calculate the binding affinity of ligand and protein. These 
affinities are calculated as a free energy of binding which is a critical quantity relevant in drug 
design and personalized medicine. The free energy difference between two states is an 
important quantity in biology, because it determines the ensemble at equilibrium. The binding 
free energy of an inhibitor often correlates to its effectiveness. As such the accurate prediction 
of binding free energies has been a longstanding goal of computational methods [3]. The two 
protocols are complementary in that ESMACS is an absolute free energy method for the ranking 
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of binding affinities for highly diverse compounds, whereas TIES is a relative free energy method 
for the estimation of free energy differences for pairs of similar (congeneric) compounds and/or 
mutated protein sequences. 

TIES aims to alleviate many of the bottlenecks in relative binding free energy calculations 
however, due to the complexity and large computational cost of running these calculations TIES 
is targeted at expert users experienced in alchemical free energy calculation. We provide 
tutorials for how to run calculations using TIES via our online documentation for the project. 
These tutorials should make it easier for less expert users to apply these methods however the 
computation cost barriers remain high. 

 
Technical specifications  
TIES is written in Python and as such is relatively hardware agnostic. The Python code will call 
external programs such as AMBERTools [6] or OpenMM and these codes are less hardware 
agnostic. The external programs which TIES uses can be interchanged for example the MD 
engine OpenMM can be swapped for NAMD and this allows TIES the flexibility to exploit 
Intel/AMD/IBM CPUs as well as NVIDIA/AMD GPUs. The main dependencies of TIES are then 
these external MD engines previously mentioned as OpenMM and NAMD. 

Typically, the resulting trajectories from a TIES or ESMACS calculation would be inspected using 
visualization software such as PyMol [7] or VMD [8]. No other external tools are strictly 
necessary to run TIES. For ESMACS, AmberTools [6] is required for the post-processing analysis 
to extract the parameters of interest. 

 
HPC usage and parallel performance 
TIES and ESMACS have been deployed on numerous HPC systems including Summit OLCF, Theta 
GPU ALCF and Longhorn TACC. TIES and ESMACS use a large ensemble of runs to distribute the 
computation to a large number of CPU cores or GPUs with no communication between 
individual replicas in the ensemble. A caveat to this is that a one CPU based instance of 
TIES/ESMACS using NAMD could itself be run in parallel using a hybrid OpenMP and MPI 
approach however, this relies on the parallel performance of NAMD which is outside the scope 
of this project.  Linear scaling has been measured up to 240 GPUs on the Summit HPC system. 
Testing beyond this number of GPUs was not performed. 

HPC infrastructures are critical to the application of TIES and ESMACS. A calculation of one 
binding affinity with TIES would typically use 120 v100 NVIDIA GPU for a wall time of 1-3 hours 
and one study may perform the calculation of tens to hundreds of binding affinities. ESMACS is 
typically performed with an ensemble of 25 replicas, which uses 25 or 50 compute nodes on HPC 
resources for a wall clock time of 3-6 hours, depending on the HPC architecture and the size of 
molecular systems. As such TIES/ESMACS can almost exclusively be applied in the large-scale 
supercomputers. The motivation for running calculations in this massively parallel way is 
twofold. First, many replicas of the simulation must be run to appropriately control for the 
aleatoric error in the MD trajectories. Secondly, binding affinities must be calculated in a timely 
fashion, on the order of hours, to be actionable in a clinical domain.  

The exploitation of alternate hardware and or the more efficient use of hardware via 
optimization would be provided by the ongoing improvements to the MD engines which 
underpin the TIES and ESMACS methodologies. These improvements would most likely be made 
by the respective developers of the MD engines. No co-design related activities are planned at 
present for TIES or ESMACS, however this could be a route to improving performance with 
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TIES/ESMACS e.g., joint efforts with NAMD or OpenMM developers to improve the performance 
of binding free energy calculation would yield performance improvements for TIES and ESMACS. 
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6.6 CT2S, ARF10 
Application description 
The Computed Tomography to Strength (CT2S) workflow is a digital twin solution, used for the 
prediction of the risk of hip fracture for an individual based on CT scans. CT2S is a web-based 
service (https://ct2s.insigneo.org/ct2s/), potential users can find all the information about CT2S 
on the website and users can approach the application owner through the website by making a 
request. The user will then securely transfer anonymised CT scans to the application owners. 
The application owners will segment the bones from CT images, generate 3D finite element 
mesh, assigned local material properties based on CT attenuation, and then perform a set of 
finite element (FE) analysis to estimate the bone strength (ANSYS) and calculate the risk of hip 
fracture. The final results will be compacted into a PDF file and sent back to the designated user 
email who requested the service [1]. The workflow is installed and usable on Sheffield’s HPC 
system ShARC. The workflow has also been tested on ARCHER (EPCC). 
 
The target users for CT2S are primarily clinicians and researchers. The clinical application of this 
code is to provide a more accurate intervention strategy for elderly people with weaker bones, 
such as those who are clinically defined as osteopenic but not receiving any treatments. The 
workflow will provide a complete assessment of bone strength in 3D and analyse the risk factor 
of that particular individual in sustaining a fall in future. This information can be used in addition 
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to clinical history and Dual-energy X-ray Absorptiometry (DXA) evaluations in order to determine 
the necessary intervention strategy. For researchers, CT2S can be applied to a wide range of 
problems concerning the mechanical response of long bones, including the prediction of fracture 
risk at different locations and for different age groups. Using this approach, the code is not 
directly distributed and the HPC elements are hidden from the clinicians to allow them easy 
access to this technology without the need to have a good understanding of HPC systems. 
 
USFD has also developed a multiscale model for current absolute risk of hip fracture (ARF0) [3]. 
In addition to femur strength (obtained from CT2S pipeline) this model included information on 
body height, weight and fall rate. These were used to predict severity and frequency of falling. 
Recent work in our group further included in this model subject-specific information on three-
dimensional trochanteric soft-tissue geometry from proximal femur CT images. These improved 
hip fracture classification accuracy to 87% in the same 100 subject postmenopausal osteoporotic 
cohort mentioned above. We also modified the ARF0 model to predict 10-year risk of hip 
fracture (ARF10) by coupling it to a model simulating spatiotemporal loss of bone density driven 
by hormonal activity. 
 
Based on ARF10 workflow developed by USFD, UNIBO has replicated the biomechanical 
computed tomography pipeline, and is developing an in silico trial solution, namely 
BoneStrength. The code is running on Cartesius (SURF, The Netherlands), Galileo, and Galileo100 
(CINECA, Italy). By using a statistical anatomy atlas trained with the Sheffield cohort [4], over 
1000 synthetic patient proximal femur FE models were generated from 94 real patient data. The 
ARF0 pipeline was applied to the synthetic patients, showing a good persistence of the original 
cohort biomechanical characteristics in the synthetic cohort. UNIBO is now working on bone 
ageing (physiology/disease) and drug effect (treatment) models in order to run a massive 
simulation of placebo vs drug phase III clinical trial, involving 1000 patients over 5-10 years. 
The natural users of the solution will be pharmaceutical companies, which will be able to tune 
the cohort inclusion criteria to maximise drug effects, or even reach statistical significance with 
less actually enrolled patients in a clinical trial. 
 
Technical specifications  
The modelling elements of the CT2S workflow focus on providing an estimation of the strength 
of an individual’s femur under a series of loading conditions, using a subject-specific FE model. 
This step involves the use of ITK-Snap for image segmentation to isolate the bone surface, ICEM 
CFD (ANSYS Inc, PA, USA) for meshing the segmented bone geometry using tetrahedral 
elements, Bonemat for personalising the bone material properties, and ANSYS (ANSYS Inc, PA, 
USA), running on ShARC, for performing the simulations. A total of 28 load simulations are 
performed (as replica computing) to comprehensively investigate the bone response under 
several fall configurations. Each load simulation requires 96 GB of memory shared across three 
cores in an OpenMP session. USFD has the capability of running the entire batch of 28 
simulations simultaneously. Results are post processed in MATLAB (MathWorks, Natick, MA) 
with custom written scripts [1].  
The ARF0 pipeline requires additional subject-specific information, specifically body weight and 
body height. The pipeline is implemented as a MATLAB function which takes these scalar values 
as input, in addition to a matrix of values of bone strength in dependence of the 28 impact 
orientations mentioned above. The MATLAB function gives the value of ARF0 as output. It 
performs a Monte-Carlo integration to estimate the risk of fracture over multiple fall scenarios. 
A sensitivity analysis has shown that 10 000 fall simulations are sufficient to estimate ARF0 with 
a reasonable residual uncertainty [2]. The fall scenarios can be analysed in parallel and the ARF0 
code has been tested on a 20-core compute node on ShARC HPC using the MATLAB default 
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MPICH2 library. Each ARF0 job has negligible memory and CPU requirements in addition to those 
of one CT2S job. 
 
For the ARF10 pipeline, the CT2S pipeline needs to be repeatedly executed 10 times, each time 
changing only the bone material properties encoded in the FE model. The algorithm to modify 
the FE model is implemented as a sequence of executions of an ANSYS macro (to write out 
current material properties into a text file), a MATLAB script (to read the text file, modify the 
property values and write these to a text file) and an ANSYS macro (to read the modified text 
file). The output of each of the 10 FE models is passed through ARF0 pipeline, and the result is 
aggregated to obtain ARF10. A full analysis of resource usage of the ARF10 pipeline is underway, 
but the following must be noted; the analysis of each of the 10 FE models is identical to that of 
one CT2S job. However, these 10 CT2S jobs can be performed independent of each other. The 
rest of the ARF10 pipeline comprises (a) generating the 10 FE models, (b) executing ARF0 on the 
output of each CT2S analysis, and (c) aggregating the ARF0 results to obtain ARF10. These steps 
are only partially parallelisable, however their resource requirement relative to the 10 CT2S jobs 
is negligible. Hence, the ARF10 pipeline is highly parallelisable as a whole. 
 
BoneStrength pipeline has been tested on Intel Xeon processors in several HPC clusters, namely 
Cartesius, Galileo and Galileo100. The core of the computation is the simulation of over 500,000 
FE models (28 falling simulation for each of the 1000 patients, for placebo and treatment arm, 
for 10 years) following a replica computing pattern. Each instance leverages ANSYS 
parallelization, using either OpenMP or MPI (IntelMPI and OpenMPI tested) on 6-8 processors; 
each simulation requires from 5 to 15 GB of RAM, depending on the I/O reduction used to avoid 
bottlenecks during massive runs. Postprocessing and data analysis are performed with custom 
Python scripts. To increase CPU efficiency, UNIBO is exploring the use of QCG-PilotJobManager 
to manage simulation submission. 
 
HPC usage and parallel performance 
The main motivation of HPC usage by CT2S and BoneStrength pipeline is the need for a rapid 
and cost-effective response to the clinical question. In particular, by leveraging HPC parallelism 
CT2S FE simulation can run simultaneously, and the physician can decide about the patient 
therapy within an hour. Conversely, BoneStrength simulations will require around 100 years if 
run serially, and HPC use can keep the user waiting time under two weeks. 
 
While the single fall simulation scalability relies on commercial software performance (with 8 
cores using MPI parallelism we reached a 6x speedup), the full pipeline shows linear scaling, 
being a replica computing pattern simulation. The largest BoneStrength production run involved 
300 nodes on Cartesius (7200 cores) for a week. 
 
Each single fall simulation by ANSYS default minimizes RAM consumption (approximately 5 GB) 
but has an important file I/O requirement (50-80 GB); while this approach is useful on 
workstations, or for single patient or small cohorts, for large cohorts (> 100 simultaneous 
patients) it is preferable to store all the temporary information in RAM and minimize file I/O to 
avoid bottlenecks. Indeed, ANSYS allows this approach, so the final requirements become 15 GB 
of RAM and 2-4 GB of file I/O. Each single-patient 1-year simulation (28 fallings) produces around 
135 GB of final data, from which 20 MB are extracted for further postprocessing. These data can 
be stored for quality checks or deleted to limit space consumption. 
 
In CompBioMed2 the CT2S/BoneStrength workflow has been automated and optimized, by 
reducing file I/O and switching to the more efficient ANSYS MPI parallelism. Next developments 
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include the use of a dedicated job manager (we are exploring QCG-PilotJob, deployed at PSNC) 
and the possible porting of the workflow to the highly parallel Alya solver developed at BSC. We 
also plan to collaborate with ATOS to investigate simulation scaling and performances on various 
traditional and experimental architectures. 
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6.7 openBF 
Application description 
openBF has been used for modelling pathologies of the cardiovascular system such as 
vasospasm and ischaemic stroke. It has also been used for modelling mechanical thrombectomy 
procedures and support the development of next generation thrombectomy devices together 
with Anaconda, a Spanish SME. 
 
Available for academic and clinical researchers, the code is Distributed open-source through 
Github at https://github.com/INSIGNEO/openBF. Information and documentation on the code 
are available on Github. Users can download the code from the Gihub repository and install it 
on their local machines/HPC clusters. The code is deployed on ShARC, USFD’s HPC cluster, but 
external users need a guest account to access it. 
 
Technical specifications  
OpenBF is written in Julia and has typical memory requirement of 500 MB/job. The output size 
of a typical simulation is below 100 MB. The code is not parallel at the moment and has been 
deployed and test on Intel CPUs. It is distributed with in house developed pre-processing and 
post-processing Python script (numpy, GPy, SALib). Work is in progress to incorporate openBF 
with the VECMA toolkit (https://www.vecma-toolkit.eu/) to support sampling in the pre-
processing stage and management of simulations 
 
HPC usage and parallel performance 
openBF is used for performing biomarker identification and sensitivity analysis of 1D 
cardiovascular models defined by hundreds of input parameters. The sensitivity analysis is 
performed through a statistical emulator that is trained on datasets whose training requires 
around 8000 simulator runs, each of which requires 15 minutes to complete on a single CPU. 
This would result in total computing time of 2000 hours. Concurrent simulations on 12 full ShARC 
nodes bring the needed time to 15 hours. Current developments are focusing on the 
improvement of the criteria for evaluating the convergence of openBF models and to define 
criteria for pathology-driven exploration of the input space. 
 

6.8 PlayMolecule 
Application description 
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PlayMolecule is a drug discovery web-service. It contains a variety of applications which allow 
users to accelerate and improve their drug discovery workflows using novel machine learning 
methods (such as binding affinity predictors) or through molecular dynamics simulations to 
elucidate biological structures and binding modes. 
 
PlayMolecule is used daily by academic institutions and industry. Both students as well as 
experienced researchers are using PlayMolecule to evaluate machine learning methods or 
simplify their molecular dynamics workflows. PlayMolecule already counts close to two 
thousand registered users with around 80 new users registering every month. 
 
PlayMolecule is available at https://playmolecule.com/. The free access has restrictions imposed 
on atom count of molecular systems due to constraints in computing resources which are 
available. 
 
Technical specifications  
PlayMolecule consists of various separate components. The web server, the backend server and 
the individual applications. The web server is written in Python, React and Angular, the backend 
is written in GoLang and the applications are written mostly in Python with some lines in C++. 
The web server and backend server have a total memory requirement of around 12 GB RAM. 
The individual application runs usually require 16 GB or more RAM, at least 2 CPU cores and a 
few of them relating to molecular dynamics and neural networks require NVIDIA GPUs. The code 
is deployed with a custom Python installation script which handles all the system setup and data 
shipping from Google Cloud Storage. 
 
The architecture of PlayMolecule can be seen in Annex 11.1.3. The web server communicates 
with the computation backend (written in GoLang) which in turn sends job executions through 
RabbitMQ to the Queue app which communicates with the queueing system. The queueing 
system then distributes the jobs to the workers and once completed the jobs send their results 
back to the backend which stores them in the MinIO server. The backend also employs a MySQL 
database to manage users, job executions, MinIO file tags and other information necessary. 
 
The code itself in the PlayMolecule backends is mostly serial (excluding the Apache server). 
However individual jobs are typically sent to a queueing system such as SLURM and can run in 
an embarrassingly parallel manner. All PlayMolecule applications are containerized with 
Singularity to ensure easy deployment and reproducibility. For visualisation of the user 
interfaces and the results, PlayMolecule offers a web server which integrates a state-of-the-art 
3D molecular viewer. 
 
HPC usage and parallel performance 
HPC resources can be leveraged by PlayMolecule both to serve a larger number of users as well 
as to provide faster computation. Applications such as AdaptiveSampling depend on multiple 
GPUs being available so that multiple simulations can be run in a high-throughput parallel 
manner to explore faster protein conformational space, or protein-ligand interactions and thus 
can fully leverage large computing clusters. 
 
PlayMolecule applications mostly run in an embarrassingly parallel manner and thus scale 
linearly to the number of resources which are available and jobs which are run. Network usage 
is limited to the transfer of input and output files for jobs which execute on cluster nodes. The 
data transfer is done from the applications to the PlayMolecule backend which in turn stores 
the files in the MinIO server. Output files are typically in the order of a few megabytes, however 
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applications such as SimpleRun and AdaptiveSampling generate molecular dynamics trajectories 
of multiple gigabytes and thus can increase network traffic. Computation time varies between 
applications ranging from a few seconds in ProteinPrepare to multiple weeks in 
AdaptiveSampling. 
 
Ongoing work in PlayMolecule is focused on reducing data duplication between cluster nodes, 
the MinIO server and the web server to also reduce network load as well as storage 
requirements. All PlayMolecule singularity applications are built using internal Python libraries 
which we regularly evaluate for performance and algorithms. 
 

6.9  TorchMD 
Application description 
UPF has been focused on the continuous development of TorchMD, our software for the 
development and usage of machine learning potentials for molecular simulations. TorchMD is 
divided into three different parts/applications, with their own code and repositories, all hosted 
in Github and freely available for everyone (https://github.com/torchmd). 
 
The first, TorchMD itself, which is an end-to-end differentiable molecular dynamics code. 
TorchMD-NET is a software for training and creating the neural network potentials. TorchMD-
CG is a specific application to learn coarse-grained potentials, currently specialized in protein 
folding.  
 
Technical specifications 
At the moment, our efforts for application hardening are focused on TorchMD-NET, and trying 
to optimize both the speed of neural network training and evaluation in a production 
environment. Regarding the first problem, we have rewritten our current code and network 
architectures using PyTorch Geometric, a PyTorch-based library with optimized code to easily 
write, implement and run Graph Neural Networks (GNNs). Implementing TorchMD-NET with 
PyTorch geometric provided us with a ~3x speed up in training, which is especially significant if 
you are dealing with large training datasets.  
 
Another issue we were encountering is the simulation speed of TorchMD with neural network 
potentials, particularly in our application for coarse-graining simulations. In order to gain some 
time, we have been using TorchScript to compile our models and switch from a pure Python 
code to a TorchScript program, optimizing the code and making it independent of Python, 
making it possible to run the scripts in a production environment where Python speed might be 
disadvantageous. By using TorchScript with our trained neural network potentials, we have 
given a ~1.8x speed-up in our coarse-grained simulations using TorchMD. 
 

6.10 Virtual Assay 
Application description 
Virtual Assay is used to perform simulations of drug effects in populations of human ventricular 
cells, and to predict potential side effects of the drugs on the human heart. Virtual Assay has 
been designed to be accessible by everyone, including people with little or no expertise in 
computer modelling and simulations. The target users are mainly pharmaceutical companies 
and academia. In industry, the main application would be for drug safety testing during pre-
clinical drug development. In academia, it can be used both for research and teaching. Virtual 
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Assay is licenced through Oxford University Innovation. A free academic licence and a 
commercial licence are available, and they can be requested at: 
https://innovation.ox.ac.uk/licence-details/virtual-assay-drug-screening-software-v-3-0/.  
 
Technical specifications 
Virtual Assay it is not a fully integrated HPC application and can run on most modern 64-bit PCs 
and laptops. The software can be installed only on Windows machines (or virtual machines) at 
present. The software provides a framework where in a population, drug simulations are 
performed, analysed and stored independently for each model, and this facilitates 
parallelisation. The software is set to automatically run simulations in parallel, up to the number 
of cores available. 
 
The code it is mainly written in C++ and the following is the minimum recommended hardware 
specification:  

• Intel i7 quad core processor or AMD equivalent 
• 8 GB RAM 
• 5 GB hard disk space 

 

7 HPC and Data Services Infrastructures 
 
In this section we describe the HPC and data storage systems used by partners and available 
within the project. In this section we describe the services available through CompBioMed or 
within any collaboration initiated within the project, to access HPC and data storage systems as 
well as support activities provided for the users’ applications. 
 

7.1 Compute and Data Systems  
 

7.1.1 CompBioMed HPC allocation programme 
Since the beginning of the CoE, CompBioMed has been granting allocations on several large scale 
HPC resources to support the work of the CoE. Within the CoE we have offered, to the 
consortium partners, both Core and Associate Partners, the opportunity to access some of the 
systems managed by CompBioMed organisations (LRZ, EPCC (UEDIN), and SURF) and obtain 
direct support from the HPC experts at each site. This has been crucial for partners to efficiently 
use the resources and employ the queue systems on board the supercomputers. 
 
Until now, we have used through this way about 7,000,000 cores hours on both CPU and GPU 
based systems hosted by project partners. The allocations listed on the website 
(https://www.compbiomed.eu/high-performance-computer-allocations/) are those that all 
partners in the consortium, as well as supported members from the wider user-community, are 
able to access to support both the pursuit of scientific goals as well as to improve the 
computational performance of their applications. 
 
In addition to the CompBioMed internal allocations, we have benefitted from access to Tier 0 
HPC systems offered through PRACE, which have been used by several partners within the 
project. Moreover, we actively monitored the deployment of the project applications and 
required underlying libraries and tools (e.g: Jupyter notebooks for training courses) on the 
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different systems, in order to provide our users with programming environments for developing, 
maintaining, or porting their codes, which can help with software deployment and increase the 
computational capacity of biomedical applications and workflows. 

7.1.2 CompBioMed codesign systems 
Within the CompBioMed CoE, we have a diverse set of testing clusters for co-design purposes. 
They include different CPU architectures such as classical x86_64 as well as emerging ARM 
architectures combined with AMD or NVIDIA accelerators. We maintain a living document 
showing the current composition of the testing clusters. 

7.1.3 CompBioMed data storage infrastructures 
In addition to the access to HPC systems, we have recently included to the possibility, for users 
affiliated with the consortium, to request access to data storage and management facilities.  
Partner UEDIN, has made available access to the RDFaaS service 
(https://docs.archer2.ac.uk/user-guide/data/#rdfaas-file-system) and to the DDN WOS Object 
Store (https://cirrus.readthedocs.io/en/master/user-guide/object_store.html) which can be 
used as temporary storage for project partners data, and to support the development of data 
management tools and services. 
In order to satisfy the need for services able to handle and make available for publication the 
large data produced during the project, we are in collaboration with a European project called 
DICE (Data Infrastructure for Capacity for EOSC, https://www.dice-eosc.eu/), to deploy a 
dedicated instance of B2SHARE at partner UCL. The plan is to setup a dedicated Virtual Machine 
(VM) and deploy the B2SHARE code (which is open source and available in the EUDAT project 
GitHub: https://github.com/EUDAT-B2SHARE/b2share) and first make a B2SHARE test 
environment. Then setup 50TB of data storage space in UCL, by mounting storage on our GPFS-
based facility to the VM using NFS. We will make the configurations to run B2SHARE data 
repository as a service. UCL will be the service provider and the storage in the backend can be 
scaled upon need of the community. It is important to mention that the UCL Research IT 
department is directly involved in this collaboration to setup the data repository. The concrete 
plan for setting up the infrastructure and running B2SHARE as a service is made in collaboration 
with DICE partners (UCL, SURF, and BSC) and financed by the DICE project WP5, Task5.2 
“CompBioMed Data Platform Integration". Defining the metadata schema to be implemented in 
the data repository to add metadata for publishing is being addressed in CompBioMed WP3. 
 

7.2 Support Service for User Applications 

7.2.1 CompBioMed applications benchmark and performance analysis tools 
 
LRZ benchmark suite 
LRZ has developed a first version of a python-based automated benchmark environment for the 
testing and benchmarking of CompBioMed applications which can be used for the systematic 
testing of the performances of the developed codes as well as for our co-design activities. The 
framework works together with JUBE (https://www.fz-
juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html), any other benchmarking 
systems and also with shell scripts. 

The intention is to write one configuration file per benchmark (using the yaml data-serialisation 
language), including general sections as well as the sections “execute”, “analyse”, “result” and 
“postprocessing”. In “execute”, the commands to execute the benchmark on a given system can 
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be specified, in “analyse”, the commands needed to generate the output (text) files and in 
“result”, the commands to parse the output file(s) and to extract the relevant data which are 
then fed into a sqlite database. The data from the sqlite database are then used to generate a 
json data file as well as plots which are then used for building the static webpage. Here, one can 
finally take extensive control over the static webpage within the “postprocessing” section. So, 
in total, after collecting the yaml files, the testing framework can automatically execute single 
or multiple different tests in an efficient way, analyse the results automatically and illustrate 
them in a very graphical and intuitive way within a static webpage. One can then, e.g., directly 
see the scaling plots of the generated benchmarks. 

So far, we have created JUBE tests for several molecular dynamics’ codes such as GROMACS, 
AMBER, OpenMM, NAMD and LAMMPS, we however intend to write further tests for our most 
scaling codes HemeLB, Alya, PALABOS and HemoCell which will then enormously increase the 
speed with which we are benchmarking our codes with ease on many different architectures. 
This will then, in turn, be the basis of our co-design efforts where we e.g., investigate the 
dependence of the code performance on the hardware composition such as e.g., the CPU/GPU 
ratio and number. 

To promote reproducibility and easy access to applications and workflows, LRZ has already 
created a python as well as SPACK package of the testing framework, which is however currently 
only used internally within the project. After experimenting at different CompBioMed HPC sites 
and further modifications, we however aim to provide the framework to the wider community. 

SURF Easybuild/Reframe automated testing suite 
SURF has worked with BSC on the integration of the Alya code within the automated workflow 
for software deployment and testing at SURF. The work, which also involved a student from the 
“Summer of HPC” programme, involved the porting of the building system used by Alya within 
the Easybuild framework (https://docs.easybuild.io/en/latest/Introduction.html) used at SURF, 
and set up specific benchmarks that have been integrated within the Reframe framework 
(https://reframe-hpc.readthedocs.io/en/stable/) used to execute fully automated regression 
tests on SURF systems. We are planning to extend the support of these technologies to other 
codes in the project, to allow users to easily access optimised codes and updated benchmarks 
tools and results. 

7.2.2 Middleware and workflows support 
 
QCG-Pilotjob benchmarks on CompBioMed systems 
Within CompBioMed we are working in collaboration with the QCG-Pilotjobs development team 
from the Poznan Supercomputing and Networking Center (PSNC) in Poland to deploy a European 
workflow manager named QCG Pilot Job Manager (https://qcg-
pilotjob.readthedocs.io/en/develop/) on different CompBioMed HPC systems and to evaluate 
the overhead of such tools and the impact they could have on exascale computational 
campaigns. This workflow manager enables automatic handling of complicated heterogenous 
workflows involving large number ensembles with different types of calculations performed 
concurrently. This falls under the planned activities to support the applications within 
“Ensemble” compute pattern, which is particularly relevant especially for validation, verification 
and uncertainty quantification; these are increasingly becoming essential for uptake of in silico 
methods in clinical medicine. We are currently testing and benchmarking it on all major 
supercomputing centres including PSNC, LRZ, EPCC and SURF. Preliminary results are reported 
in Annex 11.2, where we report the overhead measured on the HPC systems ARCHER2 (EPCC) 
and Cartesius (SURF) during our tests. As shown, the use of a middleware such as QCG-Pilotjob, 
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does not impact the overall performances, proving to be an excellent tool to manage large 
computational campaigns on HPC systems. We are currently working to extend this support to 
more applications and simulation scenarios. Successful implementation of such middleware on 
HPC clusters would substantially facilitate performing complicated workflows on HPCs at large 
scale, including of course exascale type of runs.  
 
LEXIS workflow 
CompBioMed and LEXIS, (http://lexis-project.eu), are collaborating to create a workflow 
designed to introduce a level of resilience to exascale HPC simulations. Future exascale machines 
will have a very high node count. Nodes individually have a reasonable mean time to failure, or 
MTF; however, when one aggregates 10-100 thousand nodes together in a single system, the 
overall MTF is far higher. Moreover, given exascale applications will employ MPI, and a typical 
MPI simulation will abort if a single MPI Task fails, then a node failure will cause entire 
simulations to crash. 
 
Computational biomedical simulations employing these Exascale platforms may well employ 
time- and safety-critical simulations, where results are required at the operating table in faster 
than real-time. Given the increased threat of node failure, one mitigation is to employ what we 
have named Resilient HPC Workflows. 
 
In CompBioMed, we are working with LEXIS to create a Resilient HPC Workflow, wherein a 
simulation that finds its host HPC has crashed will simply continue from where it left off on 
another HPC platform. The simulation's results will be available as if no catastrophic failure had 
occurred. 
 
LEXIS already has a form of resilient HPC workflow in its arsenal, wherein the same simulation is 
launched concurrently on multiple HPC platforms: the chances of all the platforms failing is far 
less than any individual. However, such replicated computation can prove expensive, especially 
when employing the millions of cores expected at the Exascale. 
 
The CompBioMed Resilient HPC Workflow, currently under development by CompBioMed2 Task 
3.5, is using a simulation of blood flow through a heart with a pre-existing stent. Such a 
simulation may guide a surgeon in real-time when aligning a new stent, for instance. 
 
The workflow currently involves three sites, namely LRZ, IT4I and EPCC at UEDIN. The application 
will launch at the initial HPC centre, currently at LRZ. It often writes data snapshots and, less 
frequently, restart files. As soon as these restart files are created, the LEXIS Platform will 
automatically duplicate these files to all the data nodes in the network, currently only IT4I, but 
we may involve the EUDAT data node at EPCC. These other platforms are designed to be located 
in different countries to mitigate against a centre-wide failure, e.g., power-outage, at the initial 
HPC centre. 
 
As the simulation progresses, a single MPI task will abort which will cause the entire simulation 
to fail, thus mimicking a node failure. This failure will trigger the LEXIS Platform to restart the 
simulation on one of the remote HPC platforms, where it will stage the latest restart file at all 
the HPC nodes in the network from its nearest data node. The choice of HPC platform will then 
be performed by the LEXIS Platform's broker tool, namely its “Dynamic Allocation Module”. 
 
The duplication of data for exascale simulations must consider not only the amount of data that 
needs to be copied and the bandwidth required, but also ensure both the duplication and 
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subsequent staging follows FAIR data principles, given biomedical simulations can contain 
patient sensitive data. The amount and bandwidth will be addressed by employing the existing 
GEANT2 network, whilst FAIR data principles will be addressed by the LEXIS Platform itself, as 
the underlying mechanism for staging data employs the EUDAT services which, in turn, ensures 
FAIR data principles. 
 

8 Support Services 
 
This section focuses on the support services we provide to the CompBioMed community to help 
with the development and optimisation of the supported applications.  

8.1 Scalability Support Service 
The Scalability Support is a technical service to support users in improving the scalability of 
biomedicine solutions and applications. 
 
CompBioMed offers free support to improve the scalability of your computational biomedicine 
solutions with high performance computers. Are you struggling because your code doesn’t run 
in an acceptable time? Perhaps you are trying to simulate over 1000 virtual patients? Or do you 
need to perform some large-scale sensitivity analysis to get your solution certified by a 
regulatory authority? Whatever is the reason, we can help. Thanks to the funding of the 
European Commission, the CompBioMed Centre of Excellence in Computational Biomedicine 
now offers free support to organisations in their initial steps towards improving the scalability 
of existing computational biomedicine applications and deploying them on high performance 
computing resources. 
 
The service is accessible at https://www.compbiomed.eu/compbiomed-scalability-channel/, 
which includes links to support@compbiomed.eu, application form, contact web form, and our 
Slack channel #scalability, a public channel in combination with “In Silico World” Community of 
Practice hosted on Slack. 
 
This Support service was originally named the Parallelisation Support Service and focused on 
purely the parallelisation of serial applications. This Service is designed to bring in new users to 
HPC who currently employ serial applications within their company yet find their applications 
are unable to cope with the demands of increasingly larger data sets and/or find their 
applications take too long to run. CompBioMed offers to work with such users and authors to 
help parallelise their applications and port to our HPC platforms, thereby increasing the quality 
of their application's output. 
 
The service has now been rebranded as the Scalability Support Service, and has been extended 
to include already parallel codes into the pool of new, potential applications that yet suffer from 
poor execution speed and/or need larger data set capabilities. Our Scalability Support Service 
looks to increase such applications’ ability to scale to larger core counts and, thereby, increase 
the quality of its output. 
 
The Scalability Support Services we offer to clients both external to CompBioMed and internal, 
from our own Core and Associate Partners 
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The Scalability Service itself is managed across a number of Tasks, namely Task 2.4 Emergent 
Community Application Support (Leader: UEDIN; Partners: BSC, UCL); Task 4.3 Optimising 
Biomedical Application Usage of Current and Emerging e-Infrastructures (Leader: SARA; 
Partners: UCL, UEDIN, UVA); Task 4.5: Relations with EU Initiatives and Other User Communities 
(Leader: UEDIN; Partners: SARA, CBK, UNIBO, LRZ).  
 
Firstly, T2.4, seeks to advertise and draw in users to the Service. Secondly, the work to either 
parallelise and/or scale the applications falls to T4.3. Finally, Task 4.5 seeks to exploit existing 
collaborations or affiliations to both help T2.4 advertise the Service and to help T4.3 with 
embedding the application within the CompBioMed HPC ecosystem. This process may 
eventually see the scaled and embedded applications become part of incubation processes 
planned in WP5 (i.e. “T5.3 Preparing Content for External Use and Commercialisation” and “Task 
5.2: Application Hardening”).  
 
We are currently advertising this service within the In Silico World Scalability Slack channel. The 
Scalability channel capitalises on the expertise and knowledge of HPC experts among the 
CompBioMed partners to offer free support to those who need to improve the performance of 
their computational biomedicine solutions with high performance computers. But it is also a 
safe space where users share experiences and problems related to the computational efficiency 
and scalability of their computational biomedicine solutions. 
  
However, in the near future, we will greatly extend the number of avenues available to potential 
clients. Via a single web page within the CompBioMed website, clients will see an overview of 
the Service, along with links to the Terms and Conditions of the Service itself, including our 
Corporate SLA, and links to CompBioMed’s Data Policies. These Data Policies are currently 
available on our website, and are intended to both clearly state our adherence to the required 
data handling standards, such as EU GDPR and UK GDPR, but also to convince the potential 
clients that their data will be in safe hands. We are also planning a data adequacy statement, 
outlining how data moving in and out of the EU will be handled.  
 
We shall also introduce more methods for potential clients to approach the service, over and 
above the current Slack channel, namely via a new email address, an application form in Word 
and, for the less experienced applicant, a simplified web form of the latter. The email address 
will be generic group email thus any traffic will be seen by a collection of HPC experts, thereby 
avoiding any single-point-of-failure found in an individual’s email address. The Application Form 
has been created in collaboration with the PRACE SHAPE programme, which itself seeks to help 
scale SME applications, and the POP CoE, which seeks to help exascale HPC applications. The 
unique aspect of CompBioMed’s Scalability Service is the biomedical expertise embedded in our 
partners, which permits an immediate rapport with any potential client. The application form 
includes the opportunity for clients to stipulate precisely what effort is required from 
CompBioMed and what effort will be supplied by the client themselves. Finally, the 
aforementioned web form is a simpler, reduced form of the application form, created to be a 
more friendly, open and less intimidating door for the less confident potential clients. 

8.2 Internal Helpdesk 
 
The number of avenues to access our Services is increasing and, indeed, the number of Services 
themselves have increased, we anticipate an increase in demand from end-users. To pre-empt 
the associated management issues of ensuring all contacts are maintained, retained and 
resolved to meet our SLA, an internal helpdesk system has been created. This now provides 
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CompBioMed with better control of the internal management of our services and the 
implementation of specific agreement between the members of the consortium and external 
collaborators (Operation Level Agreements).  
  
Our Internal Helpdesk system is now up and running and fully functional. It is a simple, 
lightweight system, based on a single Google Sheet [1]. Despite this apparent simplicity, the 
helpdesk actually retains the features of a fully functional Service Desk, with the light touch of a 
simple single interface, designed to be maintained by one or more staff members concurrently. 
Unlike typical Service Desks, however, our Internal Helpdesk is for staff only, and it is this 
restriction that permits its light touch implementation.  The Helpdesk is entirely self-contained, 
such that clear instructions are included, a live list of services and associated experts may be 
maintained, and an exhaustive, extendable list of new, live and resolved tickets all appear in the 
single sheet.  
 
The Helpdesk was designed and implemented by UEDIN, based on their decades of experience 
with User Support and follows many of the ITIL processes. UEDIN offers training to any 
interested parties from with the Core Partners, but it is hoped that the Helpdesk itself is intuitive 
and self-describing. 
 
The Internal Helpdesk system can now ensure all our client-facing services are supported; 
enforcing each service to have a group of contact Experts: never a single-point-of-failure, 
accessible to the end-user via the Helpdesk Operator. The Operators monitor the status of the 
different services’ requests, submitted to the Operators’ group via the Slack channel, the new 
CompBioMed support email address, application forms, webforms, face-to-face contacts, etc. 
The Helpdesk Operators provide a triage for the simpler requests: provide a customer-facing 
conduit to the more technically-minded experts and can include OLA and SLA monitoring for 
both CompBioMed and third-party services, i.e., planned processes and procedures are 
executed timely and effectively.  Finally, our Internal Helpdesk can also be used to monitor 
internal processes and inward-facing services, such as our HPC allocations process. 
 
Cited references 
[1] https://docs.google.com/spreadsheets/d/18HVyJC7vvXusND2m3d3Rb7DiGlY0EIS5rJWbOsnQpP0 
 

9 Risk Management 
 

Risk Level Mitigation 

Complicated Service 
Management System will 
introduce overhead 

Low We designed the SMS to introduce as little 
overhead as possible, aligning procedures and 
roles with the already well-established 
organisation within the CoE. 
 
We will be monitoring the status of the service 
and its provisioning, adjusting and extending 
procedures if needed. 
 

Lack of innovation and 
diversity in the service offer 

Low We will use the IP registry and support of the 
EEAB to building on the innovation infrastructure 
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 established during the first 3 years of operation of 
the CoE in Phase 1 (CompBioMed 1). 
 
The large network of associate partners 
established in CompBioMed will provide an 
extensive source of ideas and use-cases. 

Lack of customers/users Low The design and provision of services will be user-
driven and coming from specific requirements of 
the community. 
 
We have an extensive network of core and 
associate partners, with already established 
collaborations, who will help in promoting 
services and capture needs. 

Information related to 
existing or upcoming 
services too scattered. Risk 
to miss updates and input. 
 

Medium Within the SMS proposed here we will intensify 
the control and overview of IP capture within the 
different WP (e.g.: dedicated reports within WP 
meetings). 
 
The roles proposed here will help in overviewing 
the service lifecycle and support in the service 
building processes. 

Unable to provide resources 
to maintain service delivery  

Medium We are working to establish services that will be 
used and adopted by the biomedical community 
at large and we are strengthening our 
collaborations with external EU projects and 
initiatives (e.g.: DICE, Lexis). 

Services applications too 
technical/difficult to use in 
clinical set up 

Medium The project not only supports the development of 
large scale HPC applications, but also services 
which can already be used within clinical setup. 
 
We also are working in close collaboration with 
WP5 to analyse the supported HPC applications 
and develop solutions to facilitate non-expert 
users through tools and interfaces or by providing 
consulting for external clients.  
 

 

10 Conclusions  
This deliverable provides an overview of the different application and support tools we maintain 
within the compute and data services delivered within the project.  
 
The report presents the heterogenous set of software solutions, currently developed within the 
project, reporting for each their technical specifications and infrastructure usage. As we can see, 
the project portfolio includes both highly parallel HPC applications, which are serious candidates 
to efficiently use emerging exascale systems, and compute services which do not require large 
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HPC systems to be executed. Supporting both type of applications is an essential part of our 
project plans, as we need from one side to push the technical development of future exascale 
applications, but at the same time we to support the adoption of computational techniques 
within existing user communities and particularly the clinical contexts, where the use of HPC 
system is still not routinely adopted. Moreover validation, verification and uncertainty 
quantification types of run, which are increasingly becoming essential for uptake of in silico 
methods in clinical medicine, need access, also for the simplest simulation scenario, to tools and 
hardware able to facilitate the large campaigns required for this type of analysis. 
 
To support the development of new biomedical solutions, and to improve the performances and 
efficiency of the current compute and data services, within WP4, WP2 and WP5 we have 
designed several support activities to help the users to efficiently run their codes on large HPC 
systems, prepare and run effective and efficient benchmarks and to integrate their applications 
with middleware and data storage tools. These activities are essential to be able to build 
biomedical services that can be used within clinical contexts. We have plans to extend this type 
of support to more applications within the project and will offer our expertise as a service for 
external customers in the future. Through the use of our support services, we aim, indeed, to 
reach out to biomedical researchers outside of the consortium partners. Within WP4 we will 
provide technical support to develop and optimise applications, which can be then taken into 
WP5 incubation processes to extend their usage and potentially exploit commercialisation.  
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11 Annexes 
 

11.1 Applications Services Supplemental Material 

11.1.1 HemeLB 

 

 
 
Strong scaling behaviour of walltime and speed up of the HemeLB CPU and GPU codes on large 
fractions of Tier-0 supercomputers SuperMUC-NG (Germany) and Summit (USA) using the 
same test geometry. The CPU code was run on up to 309,696 cores of SuperMUC-NG (99.6% 
capacity). The GPU code was run on up to 18,432 GPUs on Summit (66.6% capacity), in further 
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testing we have run up to 88.9% of Summit’s capacity. For comparison we have used the 
measure of 1 CPU core being equivalent to a single GPU Streaming Multiprocessor (SM), this 
is the measure used by the Top500 list. 
 

11.1.2 Palabos 

 

 
 
Scaling behaviour of the Palabos-npFEM code, as it simulates a coupled fluid – Red Blood Cell 
system on a heterogeneous platform (fluid on CPU, blood cells on GPU). The graph shows 
weak scaling, and the size of the simulated blood volume (in micro-meters) is indicated for 
each data point. 
 



        D4.2: Report on Maintenance and Development of Computational Services 

PU Page 34  Version 1.0 
 

“This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Grant Agreement No 823712“ 

 

11.1.3 PlayMolecule 
 

 
 
Conceptual architecture and key components of PlayMolecule 
 
 

11.2 QCG Performance on CompBioMed HPC Systems 
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(s) 
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sh 
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d (s) 
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(%) 
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es 

usage 
(%) 

qcg-
pilotjob 
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cy (%) 

avera
ge job 
runtim
e (s) 

avg job 
launch 
overhe
ad (s) 

# of 
estimat
ed 
core-
hours 

lammps 
performan
ce 
(ns/day) 

resources 
usage (%) 

qcg-
pilotjob 
efficiency 
(%) 

20 2560 160 40 57,73 3,27 
5,6642993

24 86,7 99,8 12,51 0,01 81,18 
4.118 - 
4.382 

81,035700
68 

94,135700
68 

40 5120 320 80 57,08 3,16 5,5360896
99 86,9 99,7 12,4 0,013 163,84 4.138 - 

4.410 81,363910
3 94,163910

3 

80 1024
0 640 160 57,6 3,54 6,1458333

33 86,3 99,3 12,42 0,0123 214,4 3.990 - 
4.413 80,154166

67 93,154166
67 

100 1280
0 800 200 60,3 3,91 6,4842454

39 83,3 99,2 12,55 0,0116 311,41 3.985 - 
4.413 76,815754

56 92,715754
56 

150 1920
0 120

0 300 58,39 3,63 6,2168179
48 84,9 98,6 12,39 0,016 421,9 3.987 - 

4.422 78,683182
05 92,383182

05 

200 
2560

0 
160

0 400 59,33 3,97 
6,6913871

57 83,5 98,3 12,39 0,028 681,28 
3.087 - 
4.416 

76,808612
84 

91,608612
84 

300 
3840

0 
240

0 600 63,87 5,34 
8,3607327

38 79,2 97,5 12,65 0,074  
4.074 - 
4.420 

70,839267
26 

89,139267
26 

Performance results measured on ARCHER2 (EPCC) for the LAMMPS code with single task size 
of 64 cores and single run average walltime of 12.5s. 
 

total 
jobs: 

failed 
jobs: 

total 
cores: 

total 
nodes: 

service 
runtime (s): 

init 
overhead 
(s) : 

finish 
overhead 
(s): 

total 
overhead 
(s): 

overhead 
ratio: 

overhead 
core-hours: rusage efficiency 

200 0 1200 50 132.69  7.60  0.29  7.89  5.90% 2.63 91.5 99.4 

400 0 1200 50 252.72  7.02  0.36  7.38  2.90% 2.46 92.9 98.5 

800 0 1200 50 480.88  7.22  0.35  7.57  1.60% 2.52 96.1 99.4 

400 0 2400 100 148.56  14.05  0.35  14.40  9.70% 9.6 87.3 99 
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800 0 2400 100 283.73  12.49  0.37  12.87  4.50% 8.58 85 95.2 

800 0 4800 200 168.13  14.25  0.50  14.75  8.80% 19.67 72.9 90.3 

2500 0 2400 100 819.14  2.38  0.70  3.08  0.40% 2.05 88.7 99.3 

10000 0 4800 200 1543.05  3.43  1.32  4.76  0.30% 6.34 94.2 98.3 

10000 0 9600 400 875.51  5.75  2.21  7.95  0.90% 21.21 88.3 95.3 

Performance results measured on Cartesius (SURF) for the LAMMPS code with single task size 
of 6 cores and single run average walltime of 110s. 
 


