
 D5.2 Advanced Report on Biomedical Applications

PU Page 1 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

Grant agreement no. 823712

CompBioMed2

Research and Innovation Action
H2020-INFRAEDI-2018-1

Topic: Centres of Excellence in computing applications

D5.2 Advanced Report on Biomedical Applications

Work Package: 5

Due date of deliverable: Month 26

Actual submission date: 30th November 2021

Start date of project: 01 October 2019 Duration: 48 months

Lead beneficiary for this deliverable: BSC
Contributors: USFD, UVA, BSC, UNIBO, UCL, UPF, CBK, UOXF

Disclaimer
This document’s contents are not intended to replace consultation of any applicable legal sources
or the necessary advice of a legal expert, where appropriate. All information in this document is
provided “as is” and no guarantee or warranty is given that the information is fit for any particular
purpose. The user, therefore, uses the information at its sole risk and liability.

For the avoidance of all doubts, the European Commission has no liability in respect of this
document, which is merely representing the authors’ view.

Project co-funded by the European Commission within the H2020 Programme (2014-2020)

Dissemination Level

PU Public YES

CO Confidential, only for members of the consortium (including the Commission Services)

CI Classified, as referred to in Commission Decision 2001/844/EC

 D5.2 Advanced Report on Biomedical Applications

PU Page 2 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

Table of Contents

1 Version Log 3

2 Contributors 3

3 Definition and Acronyms 4

4 Public Summary 6

5 Introduction 6

6 Update on the Incubation Plan components 7

6.1 Innovation Management 7

6.1.1 IP Register 7

6.1.2 Incubator/Accelerator Register 7

6.1.3 External Expert Advisory Board (EEAB) 7

6.2 Stakeholder engagement 8

6.3 Enhancement of software/service offering 8

6.4 Technical aspects 8

BSC – UOXF – UNIBO: Alya 8

UPF: TorchMD 13

ACELLERA: PlayMolecule 13

USFD: pFIRE 15

USFD: openBF 17

UvA: HemoCell 18

UCL: TIES 19

7 Conclusions 23

 D5.2 Advanced Report on Biomedical Applications

PU Page 3 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

1 Version Log

Version Date Released by Nature of Change

V0.1 30/09/2021 Mariano Vázquez BSC Outline document, overall
sections defined

V0.2 22/11/2021 Mariano Vazquez Corrected comments from the
internal reviewers

V1.0 30/11/2021 Emily Lumley Final Draft, submitted to the EC

2 Contributors

Name Institution Role

Mariano Vázquez BSC Principal Author

Damien Dosimont BSC Contributor

Nick Laver CBK Contributor

Daniele Tartarini USFD Contributor

Ivan Benemerito USFD Contributor

Mateusz K Bieniek UCL Contributor

Alexander D Wade UCL Contributor

Max van der Kolk UvA Contributor

Raimondas Galvelis Acellera Contributor

Adrià Pérez UPF Contributor

Roberta de Michele UNIBO Reviewer

Vicente Grau UOXF Reviewer

Peter Coveney UCL Reviewer

Emily Lumley UCL Reviewer

 D5.2 Advanced Report on Biomedical Applications

PU Page 4 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

3 Definition and Acronyms

Acronyms Definitions

API Application Programming Interface

BAC Binding Affinity Calculator

BSC Barcelona Supercomputing Centre

CI/CD Continuous Integration/Continuous Development

CLI Command Line Interface

CoE Centre of Excellence

CPU Central Processing Unit

DICE Data Infrastructure Capacity for EOSC

EEAB External Expert Advisory board

EU European Union

GNN Graph Neural Network

GPU Graphics Processing Unit

GUI Graphical User Interface

HPC High Performance Computing

HPDA High Performance Data Analytics

HTTPS Hypertext Transfer Protocol Secure

IAB Innovation Advisory Board

IP Intellectual Property

LEXIS Large-scale Execution for Industry and Society

MD Molecular Dynamic

MPI Message Passing Interface

pFIRE parallel Framework for Image Registration

RBFE Relative Binding Free Energy

SaaS Software as a Service

SME Small and Medium Enterprise

TIES Thermodynamic Integration with Enhanced Sampling

UCL University College London

UOXF University of Oxford

UPF Universidad Pompeu Fabra

USFD University of Sheffield

 D5.2 Advanced Report on Biomedical Applications

PU Page 5 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

UvA University of Amsterdam

VCS Version Control System

VPN Virtual Private Network

WP Work Package

 D5.2 Advanced Report on Biomedical Applications

PU Page 6 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

4 Public Summary

CompBioMed is concerned with the development of computational techniques and research
software applications in the computational biomedicine domain, with particular focus on the
use of High Performance Computing (HPC) to support this research. The Centre of Excellence
(CoE) acts as a hub of best practice for the community, facilitated by a programme of
dissemination and engagement with a broad range of stakeholders from academia, clinical
practice and industry.

WP5, Incubator Applications, deals with promoting application usage and integration with
modern e-infrastructures, such as current petascale computers and high-performance clouds,
but always focusing on hardening and polishing codes which have the potential to be used by
the community in future exascale computers. It is worth to remark that WP5 is a work package
in which CompBioMed2 reports enhancement on documentation, development pipelines,
deployment and easiness-to-use even in a way that it will also cover the future exascale world.

The sustainability of the software and services developed by the CoE is demonstrated by how
the users exploit the software generated. Improving both access to applications and their
usability can be achieved through a process of software incubation, informed by end-user needs.
Dissemination of best practice in software incubation also has the potential to provide benefit
to code developers beyond the CoE partners, for application to other community software tools.
The actions carried out in this WP are aligned with the objective of preparing our codes for
extended use in the exascale era.

This deliverable reports the mid-term advances in incubation strategies for the CompBioMed2
codes.

5 Introduction

Software Incubation has a strong impact on the sustainability of any Centre of Excellence.
Incubation activity is focussed on broadening the impact of the computational solutions
developed by the CoE and promoting best practices within the biomedical research community.
In particular, WP5 deals with everything necessary to make our software more reliable, robust,
and usable, with a special focus on large-scale systems, towards exascale. Our strategy of
Software Incubation is designed to enhance the potential of the CoE to provide services to
stakeholders with interests in biomedical HPC applications. In D5.1 we defined an incubation
plan for CompBioMed2, which is implemented transversally through all the work packages. In
WP5 we deal with the technical aspects which cut through the different tasks, doing all that is
needed to ensure: code usability, application hardening, preparing content for external use and
commercialization, high performance data analytics (HPDA), model integration and containers
for cloud computing.

 D5.2 Advanced Report on Biomedical Applications

PU Page 7 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

6 Update on the Incubation Plan components
This section describes what we have done to update the different aspects of the Incubation Plan.
Firstly, Innovation Management is addressed regarding the registry and the status of the EEAB.
Next, there follows a short update of the Stakeholder Engagement status. We conclude the
section with a brief description of the advances on the Enhancement of Software/Service
offering of CompBioMed2.

6.1 Innovation Management

6.1.1 IP Register
In the first phase of the CompBioMed CoE (2016-2019), a formal Intellectual Property (IP)
register was created, which recorded background, foreground (results), and related third party
intellectual property across the project. The IP Register continues in CompBioMed 2 and is
available centrally on the CompBioMed intranet. It supports IP owners to record results,
applications and outputs for incubation and exploitation, and promotes the consideration of the
IP status as these results evolve. In CompBioMed2 the register is maintained and updated within
Task 5.3 in WP5 by UCL with the support of BSC.

6.1.2 Incubator/Accelerator Register
In the first phase of the CoE (CompBioMed1), a Central Incubator Register which lists EU
innovation incubators and accelerators was compiled and is publicly available at
https://www.compbiomed.eu/services/central-incubator-registry/. Incubators allow academic
and industrial partners to collaborate to exploit HPC and associated e-infrastructure by raising
awareness in industry, especially in SMEs, by making available and providing support for the use
of cutting edge HPC facilities. The incubator register is particularly useful in the final stage of the
innovation process, in supporting the exploitation planning and subsequently, where
appropriate, coordinating the entry of innovation candidates into incubator environments that
are suited to their specific exploitation needs. These resources are harnessed as part of the
activities in Task 5.3.

6.1.3 External Expert Advisory Board (EEAB)
The External Expert Advisory Board (EEAB) is a group of individuals representing a selection of
our industry partners, academic and clinical practitioners for the purpose of offering advice and
support on a wide range of issues relevant to all activities in the project. It is chaired by the
Project Coordinator with members appointed by the General Assembly. It is a reconstructionof
the Innovation Advisory Board (IAB), which was created during in the first iteration of the CoE,
which includes clinicians and other relevant experts who joined since the project began.

A major role of the EEAB, which has persisted through both iterations of the CoE, is its role as an
advisory resource for issues that arise in innovation, collaboration, dissemination and
exploitation. This board advises on planned incubation activities, offering valuable perspectives
from the variety of industry sectors involved. New members have been appointed as the project
has evolved, ensuring a cohort of innovation focused members within the EEAB along with other
expertise throughout the Centre. Task 1.7 has overseen the nomination of new members, who
were then formally voted onto the board by the General Assembly.

 D5.2 Advanced Report on Biomedical Applications

PU Page 8 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

6.2 Stakeholder engagement
The Incubation activities undertaken focus on broadening the impact of the computational
solutions developed by the CoE and promoting best practices within the biomedical research
community. CompBioMed2 has facilitated these interactions through the innovation and
community activities in WP6 (see D6.1 published in M18), along with other EU funded projects
in this space, within the In Silico World initiative, such as the Scalability1 or the Good Simulation
Practice2 Channels in Slack. Additional stakeholder engagement has been achieved through the
continued dissemination of training materials through a variety of channels, including the CoE’s
Training Portal and Repository, the compbiomed.eu website, the e-Seminar series, which has
grown throughout the pandemic, and open-source repositories such as GitHub, and the
established Helpdesk, to track all support requests from potential clients, associate partners,
etc., and the creation of general compbiomed.eu e-mail addresses (see Deliverable D4.1).
Additionally, the CoE held an online conference 15-17th September 2021 which attracted around
200 participates and 50 speakers across a range of session and topics.

6.3 Enhancement of software/service offering
There are several new products and services developed within CompBioMed2. This includes new
data transfer infrastructures, for instance those developed in collaboration with DICE (Data
Infrastructure Capacity for EOSC), or with LEXIS (Large-scale Execution for Industry and Society),
for the facilitation of intense data transfer across HPC centres and during data staging. We
developed an automated benchmark environment for the testing and execution of code,
analysis and postprocessing and code scalability support as a service to increase the quality of
code output. On training and dissemination, we have new course materials for the introduction
of student and professional medics to high performance computing and in silico research; and
an e-Seminar series with 18 instalments to date (as of October 6 2021) covering a wide range of
topics in computational biomedicine3.

6.4 Technical aspects
We will go through the technical aspects of the different partners’ efforts reported in this
Work Package.

BSC – UOXF – UNIBO: Alya
One of the most important tasks that BSC is performing in CompBioMed2 facing application
hardening and usage enhancement was to radically transform the Alya development strategy.
Currently, Alya is hosted on gitlab.com under the form of a git repository. Git is a free and open-
source distributed version control system, being available since 2006 when it was created by
Linus Torvalds, the same person behind Linux. Between 2006 and the present, Git has become
the dominant version control system (VCS) in software development, used today by millions of
developers. On top of that, quoting from its webpage “GitLab is a complete DevOps platform,
delivered as a single application, fundamentally changing the way Development, Security, and
Ops teams collaborate and build software”. Besides hosting the repository, GitLab proposes a
web-based graphical interface and all the DevOps features that enable efficient teamwork.

1 https://www.compbiomed.eu/compbiomed-scalability-channel/
2 https://insilico.world/community/good-simulation-practice/
3 https://www.compbiomed.eu/events-2/

 D5.2 Advanced Report on Biomedical Applications

PU Page 9 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

Figure 1. Screenshot of the Alya GitLab CICD pipeline.

In GitLab, Alya follows a development workflow based on continuous integration - continuous
development/deployment (CICD). This practice is widely used in the software industry and the
open-source DevOps community4,5, and has been recently adopted by the HPC community6. It
allows the programmers to structure and speed up the development, automate the testing to
prevent bugs from being introduced, guarantee code reliability, promote its portability, ensure
the stability of the code on various platforms, as well as keep track of the code performance.

Figure 2. Scheme of the Alya's CICD pipeline.

4 Shahin, Ali Babar, et Zhu, « Continuous Integration, Delivery and Deployment »
5 Sampedro, Holt, et Hauser, « Continuous Integration and Delivery for HPC ».
6 Sharif, Janto, et Lueckemeyer, « COaaS ».

 D5.2 Advanced Report on Biomedical Applications

PU Page 10 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

Being one of the modelling codes which is clearly on the road to the exascale realm, Alya must
have a specifically designed CICD pipeline. The Alya CICD workflow has currently 60-80
users/developers at different institutions, which has created more than 1100 issues. Notably,
CompBioMed2’s partner UOXF has been its first beta-tester, helping BSC to improve the user
experience. Currently, it has more than 400 regression and unit tests and more than 20
benchmark tests. So far, we have more than 14,000 commits to the Master pipeline and the 12
open and available source forks we have created.

Test Suite. The testsuite is a program written in Fortran that builds
Alya with several compilers (INTEL, GNU, PGI and XL) and various options on MareNostrum IV
and power9 (29 builds), as well as 353 regression tests for each build, for which the outputs are
compared with reference data. The testsuite guarantees the stability of the code for each build,
as well as the validity of the output, and thus the physical equations written in the code. We
want to remark that one of the builds of the test suite is an Alya version containerized using
Singularity, to ensure the sustainability of the containerized version. It is executed each time a
merge request is about to be validated.

Benchmark Suite. The benchmark suite which is run in the master pipeline is also managed by
the testsuite program. In this case, the test cases executed are monitored and the duration of
the different parts of the code, as well as various metrics such as the memory consumption or
the computation and communication efficiency, are retrieved and stored in a database. This can
provide important information not only to track time changes in the code efficiency, but also
with co-design purposes, by monitoring code performance under the different operational
conditions of the cluster. A web interface, rooster, enables such data to be visualized and the
variation of such metrics at each commit to be analyzed, as well as comparing the build
performance between them. The Benchmark Suite is critical to ensure performance stability,
progressively more critical as the size of the system grows, with its culmen at the exascale.

Figure 3. Graph produced by rooster highlighting the test cases execution time variation. The outliers are related to

issues with MareNostrum IV (temperature or gpfs issues).

 D5.2 Advanced Report on Biomedical Applications

PU Page 11 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

Figure 4. Other outputs produced by rooster, showing the evolution of the execution time for intel i4 vs the date, as

well as the details of the duration of each code part, and a comparison with other builds.

Architecture. To execute the whole pipeline, we have architectured our system as follows:

• Gitlab.com is responsible for the storage of the repositories, the execution of the
pipelines, and the storage of the artifacts, which are files generated by the job execution
that can be transferred between jobs or between pipelines.

• Pipeline jobs are executed by gitlab-runner, which is a service. Gitlab.com provides free
runners, but we also have three machines running the jobs: two or them are located
within the BSC network, and another one, which is outside.

• The testsuite, benchmark and deployment jobs run mandatorily on one of our systems
within the BSC network, because they require access to MareNostrum IV and Power9,

 D5.2 Advanced Report on Biomedical Applications

PU Page 12 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

the two supercomputers we use in production. As time evolves, we can setup the tests
on a different architecture, of different size and features.

• The testsuite results are stored , being accessible through Apache as web pages.
• The database containing the benchmark results is hosted on a different system within

the BSC network.
• Rooster, the graphical interface to visualize the benchmark results, runs through a

guinicorn server hosted on the SaaS heroku.

In parallel to this effort, BSC and UOXF have been working on testing the new Alya MultiMesh
capacity for coupling the electromechanical problems, reporting in WP5 the effort of improving
the input format files and the restarting strategy. The MultiMesh strategy is critical for using the
proper amount of resources according to the physics of the individual part on a coupled run,
specially in the largest systems.

Figure 5. Alya MultiMesh coupling strategy.

Finally, BSC and UNIBO are refactoring BoneStrength application to integrate Alya following
this strategy:

• UNIBO will use it deployed in MareNostrum IV
• Virtual Population runs will be managed using either Dakota or VECMA Tools, both of

them already tested

Deployment required to compile and install the different libraries in MareNostrum, also
creating several Python scripts to manage the patient’s definition and data gathering.

 D5.2 Advanced Report on Biomedical Applications

PU Page 13 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

Figure 6. BSC and UNIBO are refactoring UNIBO's BoneStrength.

UPF: TorchMD
UPF has been focused on the continuous development of TorchMD, our software for the
development and usage of machine learning derived potentials for molecular simulations.
TorchMD is divided into three different parts/applications, with their own code and repositories,
all hosted in Github and freely available for everyone at https://github.com/torchmd.

The first, TorchMD itself, is an end-to-end differentiable molecular dynamics code. TorchMD-
NET is a software for training and creating the neural network potentials. TorchMD-CG is a
specific application to learn coarse-grained potentials, currently specialized in protein folding.

At the moment, our efforts for application hardening are focused on TorchMD-NET, and trying
to optimize both the speed of neural network training and evaluation in a production
environment. Regarding the first problem, we have rewritten our current code and network
architectures using Pytorch Geometric, a PyTorch-based library with optimized code to easily
write, implement and run Graph Neural Networks (GNNs). Implementing TorchMD-NET with
PyTorch Geometric provided us with a ~3x speed up in training, which is especially significant if
you are dealing with large training datasets.

Another issue we were encountering is the simulation speed of TorchMD with neural network
computed potentials, particularly in our application for coarse-graining simulations. We have
been using TorchScript in order to compile our models and switch from a pure Python code to a
TorchScript program, optimizing the code and making it independent of Python, making it
possible to run the scripts in a production environment where Python speed might be
disadvantageous. By using TorchScript with our trained neural network potentials, we have
achieved a ~1.8x speed-up in our coarse-grained simulations using TorchMD

ACELLERA: PlayMolecule
PlayMolecule is a drug discovery web-service. It contains a variety of applications which allow
users to accelerate and improve their drug discovery workflows either through the use of novel
machine learning methods (such as binding affinity predictors) or through molecular dynamics
simulations to elucidate biological structures and binding modes. PlayMolecule is used daily by
academic institutions and industry. Students as well as experienced researchers are using
PlayMolecule to evaluate machine learning methods or simplify their molecular dynamics
workflows. PlayMolecule already counts close to two thousand registered users with around 80
new users registering every month. PlayMolecule is available at https://playmolecule.com/. The
free access has restrictions imposed on atom count of molecular systems due to constraints in
computing resources which are available.

 D5.2 Advanced Report on Biomedical Applications

PU Page 14 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

PlayMolecule consists of various separate components. The web server, the backend server and
the individual applications. The web server is written in Python, React and Angular, the backend
is written in GoLang and the applications are written mostly in Python with a few in C++. The
web server and backend server have a total memory requirement of around 12 GB RAM. The
individual application runs usually require 16 GB or more RAM, at least 2 CPU cores and a few
of them, specially those related to molecular dynamics and neural networks, require NVIDIA
GPUs. The code is deployed with a custom Python installation script which handles all the system
setup and data shipping from Google Cloud Storage.

The architecture of PlayMolecule can be seen in Figure 7 The web server communicates with
the computation backend (written in GoLang) which in turn sends job executions through
RabbitMQ to the Queue app which communicates with the queueing system. The queueing
system then distributes the jobs to the workers and once completed, the jobs send their results
to the backend again, which stores them in the MinIO server. The backend also employs a MySQL
database to manage users, job executions, MinIO file tags and other information necessary.

Figure 7. Conceptual architecture and key components of PlayMolecule

All PlayMolecule applications are containerized with Singularity to ensure easy deployment and
reproducibility. For visualisation of the user interfaces and the results, PlayMolecule offers a
web server which integrates a state-of-the-art 3D molecular viewer. HPC resources can be
leveraged by PlayMolecule both to serve a larger number of users as well as to provide faster
computation. Applications such as AdaptiveSampling depend on multiple GPUs being available
so that multiple simulations can be run in a high-throughput parallel manner to explore faster
protein conformational space, or protein-ligand interactions and thus can fully leverage large
computing clusters.

PlayMolecule applications mostly run in an embarrassingly parallel manner and thus scale
linearly to the number of resources which are available and jobs which are run. Network usage
is limited to the transfer of input and output files for jobs which execute on cluster nodes. The
data transfer is done from the applications to the PlayMolecule backend which in turn stores
the files in the MinIO server. Output files are typically in the order of a few megabytes, however

 D5.2 Advanced Report on Biomedical Applications

PU Page 15 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

applications such as SimpleRun and AdaptiveSampling generate molecular dynamics trajectories
of multiple gigabytes and thus can increase network traffic. Computation time varies between
applications ranging from a few seconds in ProteinPrepare to multiple weeks in
AdaptiveSampling.

Ongoing work in PlayMolecule is focused on reducing data duplication between cluster nodes,
the MinIO server and the web server to also reduce network load as well as storage
requirements. All PlayMolecule singularity applications are built using internal Python libraries
which we regularly evaluate for performance and algorithms.

USFD: pFIRE
pFIRE (parallel Framework for Image Registration) is a software suite implementing a medical
image elastic registration algorithm. The original algorithm has been developed and validated
for a specific set of anatomical regions and modalities. The current work is focused on extending
and validating the algorithm on different biomedical domains. From the technological
perspective, the initial code needed a refactoring to improve sustainability, reliability,
interoperability, and better computational performances on HPC systems (with special attention
on readiness for exascale architectures).
Following the FAIR software7 principles the following actions have been implemented:

● Findable: the software is open source and freely available from
http://github.com/INSIGNEO/pFIRE both for humans and machines. Each
version was initially identified by sequential numbering (version xx.y.z) while in
the future a more meaningful convention based on the year of release will be
used (version YEAR.y.z). A journal paper with DOI will be published for next
release and a set of domain metadata will be defined to allow indexing.

● Accessible: the software is freely retrievable via standard protocols as source
code, compiled binary and library, and containerised Docker/Singularity images
(hub.docker.com/r/insigneopfire/pfire)

● Interoperable: standard data formats are used for images to be registered (e.g.
DICOM, png) and to store the registration data to reproduce results (HDF5)

● Reusable: it is open source and built against standard C++ FAIR dependencies.
License is Apache 2.0 and credit is acknowledged to both developers and those
formulating the underlying theory. Thorough and accessible documentation for
end-user and developers, and tutorials lower the learning curve for wider
adoption of the software by the community.

Reliability
pFIRE is co-developed with research groups focusing on clinical applications of imaging
registration to satisfy the highest possible specifications in terms of reliability and accuracy.
It is undergoing a comprehensive refactoring process introducing extensive testing (unit tests,
regression tests) and validation benchmarks. The unit tests are implemented through the Boost
Unit Test Framework while regression tests and benchmark are implemented via an in-house ad
hoc framework implemented in Python and Matlab.

The benchmark suite is designed to extract quality measures to assess the registration quality
to be used as a comparative measure with respect to other registration algorithms. A section of

7 https://www.fairsfair.eu/fair-practices-semantics-interoperability-and-services

 D5.2 Advanced Report on Biomedical Applications

PU Page 16 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

the benchmark is used to profile the computational performance of the software on parallel
architectures and large datasets.

pFIRE Containers
pFIRE is made available as Docker and Singularity images respectively for desktop users and HPC
systems. The generation of images is a time-consuming process especially when several library
dependencies have to be tested and supported on few operating systems (e.g. CentoOS and
Ubuntu). The solution adopted for pFIRE is to modularize the container image in three
components (Figure 8): Operating system, pFIRE dependencies and pFIRE release. Each
component is a container image built starting from the one immediately below. Once the pFIRE
dependencies image is generated, any new pFIRE releases can be generated without re-building
the components below, saving time.

Figure 8. pFIRE Singularity image structure

Containerisation for Cloud-HPC
Like most of the software with complex library dependencies, pFIRE installation from source is
a time consuming task that may prove challenging for end-users not familiar with Linux. For that
reason, pFIRE is provided as public Docker image ready to be used on any workstation operating
system.

It is expected that users would like to register complex and large datasets exploiting HPC
systems, with exascale systems as the final goal. pFIRE supports parallel computing via MPI and
has been installed on clusters systems of the University of Sheffield (ShARC, Bessemer) and
ARCHER at the EPCC. HPC system administrators usually maintain restrictive policies on
installation of libraries and configurations allowed on their systems. It may prove challenging to
compile pFIRE and its dependencies on any possible HPC systems. The solution that has been
adopted to simplify deployment on HPC is to distribute pFIRE as Singularity image. This solution
allows the use of optimized MPI installation on the destination HPC system with negligible
impact on performance and deployment time.

Continuous integration and Delivery (CI/CD)
Since the start of pFIRE development a CI/CD model has been used where code updates
committed to Github triggered the execution of a testing framework on Travis-CI online;
software artifacts were made available on Github. The refactoring work conducted in the
CompBioMed project revealed the limitations of this setup and led to the adoption of the more
flexible and customizable system based on Jenkins CI/DI. In the new system developers continue

 D5.2 Advanced Report on Biomedical Applications

PU Page 17 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

to use Github as concurrent versioning system and upon each code commit the testing
framework is run by Jenkins. It allows the CI/CD pipeline to be run on different computational
nodes, Docker images and HPC systems.
In the new system, Figure 9, Jenkins executes the testing framework on a number of
Docker/Singularity images representing the environments (operating systems and library
dependencies) currently supported by pFIRE. Execution of testing framework on HPC systems is
currently under development along with a regression and profiling benchmark.
When a new release of pFIRE successfully completes the testing, new software artifacts are
released and the containers are updated.

Figure 9. pFIRE continuous integration and delivery framework

Regarding co-design aspects of application usage enhancement, the distribution of pFIRE as an
out-of-the-box Docker container enabled us to lower the usability barrier with users and actively
engage with research groups within USFD and other European institutions to capture their
feedback.
This model of co-design has been instrumental in collaborating with researchers in anatomical
domains where the pFIRE algorithm was not validated before. This close interaction with end-
users is enabling the algorithm to be tweeked to address for example registration of pulmonary
hypertension [DT_5], cardiac cycle [DT_4] and digital volume correlation for bone strength
analysis [DT_6]. In particular, a benchmark framework has been developed to evaluate the
accuracy of the registration algorithm on images of interest to the user. It extracts a set of quality
measures used to refine the algorithm and add functionalities to the software.

USFD: openBF
openBF is a software that allows the wave propagation problem in 1D models of the human
cardiovascular system to be solved, and the prediction of flow rate, pressure and other
haemodynamic variables across the network. The software has been validated against the
literature in case of physiological flow in models of full body and brain circulation. It is currently

 D5.2 Advanced Report on Biomedical Applications

PU Page 18 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

used for identification of biomarkers for cardiovascular pathologies such as vasospasm and
ischaemic stroke (manuscript in preparation).

openBF is open-source and available through GitHub at https://github.com/INSIGNEO/openBF
and through Figshare at https://doi.org/10.15131/shef.data.7166183. It has been licensed with
Apache 2.0. The GitHub repository provides documentation and tutorials for the usage on
exemplar networks. Continuous integration testing is run with Travis-CI after push to any GitHub
branch.

openBF requires the installation of the Julia programming language (https://julialang.org), and
can then be added through the package manager. Besides the Julia Revise package, which is
needed for development, no further dependencies are required for research applications.
Additionally, openBF is also available through Julia notebook at https://mybinder.org.

openBF operates with textual input and output files. To increase usability and user uptake, we
are developing a GUI using the Python library Tkinter. This will allow users to create networks
and define their connectivity and parameters using a drag and drop interface, and to run
simulations directly from the GUI.

UvA: HemoCell
The enhancements introduced in HemoCell focus on application hardening by introducing a
variety of updates considering the build system, the continuous integration / continuous
development (CI/CD), and the user-facing documentation pages. These updates simplified the
build process, reduced repeated code, and streamlined the CI/CD pipelines. Combined with
improved documentation, they make HemoCell more approachable for first-time users and
more robust for changes during development.

Previously the build system used CMake to configure and compile HemoCell. Specifically, a
CMake configuration was provided with each individual example or case study. These files
included compilation information, such as compiler flags, dependencies, and other settings, to
ensure the examples are properly linked and compiled. The downside of this approach was the
large number of repeated configuration information within each example file. Thus, changing a
compiler flag would require repeated, and error-prone, changes throughout all CMake files.

To reduce this repetition, the build system has been largely rewritten. The new approach still
uses CMake., however, now HemoCell is compiled as a library first, providing multiple versions
of the library with different physics enabled, such as interior viscosity or solidification
mechanics. Afterwards, the individual examples only require linking with any of these
precompiled libraries. This has the advantage of combining all configuration information into a
single file and reducing example configuration to a simple instruction to link with HemoCell.
Furthermore, recompilation of examples does not (necessarily) require recompiling the
complete library and only requires compiling and linking the user’s code. This significantly
accelerates the “edit-and-compile" cycles during development.

In addition to rewriting the build system itself, a set of validation tests have been included.
During compilation, the configuration provides an optional dependency with the Google Test
framework, enabling the compilation of multiple validations tests. These tests are based on
previously published numerical experiments illustrating validated cell mechanics and they
ensure that previously validated behavior remains true during future development.

 D5.2 Advanced Report on Biomedical Applications

PU Page 19 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

Finally, the CI/CD pipelines have been updated to reflect the changes in the build system and
introduction of validation tests. The pipeline contains four distinct stages. First, all libraries,
examples, and tests are compiled. Secondly, any (unit) tests are evaluated to ensure the tests
code is still functional. Then, we evaluate the detailed validations tests. If those pass, the
documentation is compiled and provided on Gitlab for the latest version of the library. These
pipelines are enabled for all merge requests onto the library’s main branch, providing a distinct
moment for code inspection and review.

UCL: TIES

TIES
Thermodynamic Integration with Enhanced Sampling, or TIES, is a protocol for the calculation of
the Relative Binding Free Energies (RBFE) with the potential applications in different stages of
drug development. TIES is part of the broader suite of programs for binding affinity calculation
(BAC). To create TIES we have written a Python application using the latest software practices
that include Unit Testing and Continuous Integration, Python API and CLI that is based on it,
which we further then validated8. We have now released a software suite (ties-service.org)
consisting of a web interface called WebTIES to generate input for RBFE calculations and an open
source package TIES MD to run RBFE calculations. BAC programs are parallel applications and as
such can be scaled up to consume large core count. In recent block operations on SuperMUC-
NG applications of BAC used 311,040 cores to calculate 3200 binding affinities in 11 hours of
wall time.

WebTIES
The web portal facilitates the preparation of input files for the RBFE calculation with the TIES
protocol. In other words, it is an interface to the TIES 20 software. It is developed using the
Django framework in Python and the overall ecosystem is presented in the Figure below. It
consists of four main elements: a web server for interacting with the users, a queueing system
for any computational tasks that span more than 0.1 of a second, workers that process the
queue, and the database.

Figure 10. WebTIES Architecture. The arrows represent the direction in which the connection and interaction is

initiated.

 D5.2 Advanced Report on Biomedical Applications

PU Page 20 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

WebTIES is configured to use a reverse proxy with the encrypted HTTPS protocol in the public
space. Internally, the requests only on the specific port are forwarded to the correct Apache
server. Furthermore, any administrative work (/admin), including staff user accounts in
WebTIES, are required to be in the administrative virtual private network (VPN). Additionally,
any connection made is password controlled and open only to specific hosts.

Each of the major components is hosted in either a container or a Virtual Machine, with the
communications taking place over the network, thus ensuring that the components can be
replaced easily.

The system was designed in order to avoid being overwhelmed with work by employing the
queueing system. Users are allowed to submit a number of jobs where each can take anywhere
from 2 seconds up to 30 minutes in extreme cases on a single core. This work is saved and
processed by the workers as they become free. Our initial set up uses 50 workers with the full
capacity in our network of around 300 workers. This ensures appropriate scaling in the future,
as the container can be easily deployed on additional hosts to increase the processing
capabilities.

Figure 11. The initial minimal web interface. Users can upload ligands, process them, and then download the

generated files.

The initial release of the website is minimal as shown in the web interface Figure 11 above. User
creation is automatic for everyone with an academic email, whereas private users are asked to
answer additional questions. User emails are verified with a standard token generation and
automated emails, and any user input is sanitised. Once the user generates the input files, the
next stage is to run the computationally expensive calculations by employing TIES MD.

TIES MD
TIES MD is an open source Python based implementation of the TIES protocol. TIES MD can set
up and run RBFE calculations, a task which is normally complex and time consuming. This

 D5.2 Advanced Report on Biomedical Applications

PU Page 21 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

complexity arises from two sources 1) because running many replica simulations is critical to
control the aleatoric error in Molecular Dynamic (MD) simulations which are inherently chaotic
and 2) because RBFE can be run with an alchemical methodology which requires many
independent simulations to be run for different lambda windows8. As such a typical RBFE
calculation might involve setting up and running 65 independent simulations, TIES MD expedites
the setup of these simulations by preparing all required inputs and scripts automatically. TIES
MD can create input for the commonly used MD engines OpenMM9 and NAMD10 and could be
extended to support others. The Figure below shows all the individual simulations that TIES MD
sets up for one RBFE calculation explicitly. These ensembles of calculations cannot be run
without large core counts over which to distribute the workload. Each replica and lambda
window is independent thus these simulations are embarrassingly parallel and so can scale to
tens of thousands of cores easily and can be deployed on emerging exascale machines.

Figure 12. All simulation prepared by TIES MD for a RBFE calculation. There are 65 simulations total coming from
13 Lambda windows each run for 5 replicas. For each simulation there are multiple stages: equilibration, production

and analysis TIES MD will also perform all these stages, as necessary.

TIES MD is supported by documentation which is provided here: (https://ucl-
ccs.github.io/TIES_MD/) This documentation is built automatically using Sphinx11 and
documents both the code and provides tutorials for how to run the simulations in High
Performance Computing (HPC) environments.

8 Jorgensen, W.L. and Thomas, L.L., 2008. Perspective on free-energy perturbation calculations for
chemical equilibria. Journal of chemical theory and computation, 4(6), pp.869-876.
9 Eastman, P., Swails, J., Chodera, J.D., McGibbon, R.T., Zhao, Y., Beauchamp, K.A., Wang, L.P.,
Simmonett, A.C., Harrigan, M.P., Stern, C.D. and Wiewiora, R.P., 2017. OpenMM 7: Rapid development
of high performance algorithms for molecular dynamics. PLoS computational biology, 13(7), p.e1005659.
10 Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D.,
Kale, L. and Schulten, K., 2005. Scalable molecular dynamics with NAMD. Journal of computational
chemistry, 26(16), pp.1781-1802.
11 Sphinx Homepage. Available at: https://www.sphinx-doc.org/en/master/index.html (29th September
2021).

 D5.2 Advanced Report on Biomedical Applications

PU Page 22 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

Figure 13. Presentation of the home page for TIES MD documentation.

The performance of TIES MD is critically linked to the performance of the MD engines which run
the MD simulation. Performing the MD simulation is the bottleneck to this code and as such any
performance improvement to these MD engines is inherited by TIES MD. To provide context for
the performance of these simulations when using OpenMM with 65 V100 Nvidia Graphic
Processing Units (GPU) one RBFE calculation would take around 2 hours of wall time. Since all
the simulations are independent, performance can be scaled linearly adding more RBFE
calculations, lambda windows or replica simulation with little or no loss in performance.

 D5.2 Advanced Report on Biomedical Applications

PU Page 23 Version 1.0

“This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under the Grant Agreement No 823712“

7 Conclusions

This document has defined the nature of the activities that provide the basis for incubation of
software applications within CompBioMed2, with a special focus on the aspects that will be
useful as the systems grow towards exascale. Progress to date has been reported for tasks which
have already commenced, along with future plans for activities which will be reported in later
WP5 deliverables. Links to activity in other Work Packages has been described, particularly in
the context of the contribution of the incubation activities to the overall sustainability plan for
the CoE.

In this deliverable we have updated the different Incubation Plan components, as set out in D5.1.
We have updated the Innovation Management, regarding registry and status of the EEAB and
the Stakeholder Engagement status. Finally, we provided a brief description of the different
advances on the Enhancement of Software/Service offering of CompBioMed2 from the technical
point of view for the different applications of the Center of Excellence.

