
Porting HemeLB
for human-scale blood flow simulation 

on GPUs and high performance computers

Zacharoudiou, I.1, McCullough, J.W.S.1, Lo, S.C.Y.1, Coveney, P.V.1,2

1 Centre for Computational Science, Department of Chemistry, University College 
London, UK

2 Institute of Informatics, University of Amsterdam, The Netherlands



1. Introduction
• Motivation
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- Development of the virtual human

- Assist clinicians' ability to understand how a course of treatment will impact 
a given individual

- Simulating the patient using a personalised digital replica

Patient specific modelling

- Conducting simulations for the virtual human                
development of codes that can 

execute and scale efficiently 

on large-scale computing infrastructure

- Develop a GPU version of HemeLB*

Blood flow simulations on 3D vascular geometries.

1. Introduction - Motivation

* M.D. Mazzeo, P.V. Coveney (2008). Computer Physics Communications.
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- Development of HemeLB* (heme from Hemodynamics)

- A high-performance, parallel lattice Boltzmann (LB) based fluid flow solver 
for simulating blood flow on patient specific images obtained from medical 
scans.

- C++ code parallelized using standard MPI communications

- Optimised for sparse geometries (vascular trees) 

1. Introduction - HemeLB

* M.D. Mazzeo, P.V. Coveney (2008). Computer Physics Communications.

SuperMUC-NG
- MPI - Scalability of the code

- excellent strong scaling 
performance up to hundreds 
of thousands of CPU cores
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Applications of HemeLB

- Cerebral aneurysms and blood flow

- Magnetic drug targeting*1

1. Introduction - HemeLB

*1 A. Patronis et al. (2018). Frontiers in physiology 9, 331.
*2 M.O. Bernabeu et al. (2014). Journal of the Royal Society Interface, 11(99), 20140543.

- Stent design

- Retinal vascular flow*2

- Coupling with organs, 
e.g the heart

- Self-coupling of 
HemeLB*3

(simultaneous 
simulation of arterial 
and venous vascular 
trees)

*3 J.W. McCullough et al. (2021).
Interface focus, 11(1), 20190119.
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1. Why porting HemeLB to GPUs?

- FRONTIER the first official exascale machine !!!

AMD GPUsNVIDIA GPUs

HPC machines accelerated by GPUs
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1. Why porting HemeLB to GPUs?

- Graphics Processing Units (GPUs) – become commonplace on HPC machines

- Develop a GPU version of HemeLB (HemeLB_GPU)

- CUDA (Compute Unified Device Architecture)

- HIP (Heterogeneous-Compute Interface for Portability)  

- Intel oneAPI
Intel’s hardware + NVIDIA + AMD

NVIDIA GPUs

AMD GPUs NVIDIA GPUs

Make HemeLB_GPU platform agnostic
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• Equations of motion

• The lattice Boltzmann method

– Evolution equation of the particle distribution functions

– Conservation of mass and momentum

2. The lattice Boltzmann method (LBM)

NS eq.     uupuuut  )()(
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I. Collision step: 

II. Streaming step:
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2. The lattice Boltzmann method (LBM)

𝐃𝟑𝐐𝟏𝟗

Collide & Stream (propagate to the next lattice site)

- Collision step 

𝑓𝑖
′ 𝒓, 𝑡 = 𝑓𝑖 𝒓, 𝑡 −

1

𝜏
𝑓𝑖 𝒓, 𝑡 − 𝑓𝑖

𝑒𝑞
𝒓, 𝑡

- Streaming step 
𝑓𝑖 𝒓 + 𝒆𝑖Δ𝑡, 𝑡 + Δ𝑡 = 𝑓𝑖

′(𝒓, 𝑡)

Apply Boundary Conditions
Missing incoming  𝑓𝑖

′(𝑟, 𝑡)
Inlets / outlets / solid surfaces

Image: Krüger, Timm, et al. "The lattice Boltzmann 
method." Springer International Publishing 10.978-3 (2017): 4-15.
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3. HemeLB – Algorithmic implementation 

General background – The lattice Boltzmann Algorithm Repeat # n time-Steps

Initialise 
macroscopic 

quantities 𝜌, 𝒖
Evaluate 𝒇𝒊

𝒆𝒒
(𝜌, 𝒖)

Collision Step

𝒇𝒊 , 𝒇𝒊
𝒆𝒒
 𝒇𝒊
′

Streaming Step

𝒇𝒊
′ 𝒇𝒊

Apply Boundary 
Conditions (Walls / 

Inlets – Outlets)

New time-step

𝒕 + 𝚫𝒕 𝒕

Update moments 

of 𝒇𝒊  𝜌, 𝒖

Determine unknown 𝒇𝒊

𝒇𝒊
𝒆𝒒
 𝒇𝒊

Obtain macroscopic 
quantities 
𝑝 = 𝜌 𝑐𝑠

2 = 𝜌/3
𝒖
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4. GPU CUDA version of HemeLB – Code Development 

General background
Porting HemeLB to GPUs  

HemeLB distinguishes 6 types of collision - streaming: 

1. Inner domain: only fluid sites without any links to any type of 
boundaries (walls or inlets/outlets), 

2. Walls: fluid sites with a link to a solid surface, 

3. Inlet, 

4. Outlet, 

5. Inlet with Walls and 

6. Outlet with Walls. 

Collision Step

𝒇𝒊 , 𝒇𝒊
𝒆𝒒
 𝒇𝒊
′

Streaming Step

𝒇𝒊
′ 𝒇𝒊

Apply Boundary 
Conditions (Walls / 

Inlets – Outlets)

Collision – Streaming kernels

GPU

Collision – Streaming 

kernels

export the compute intensive 
parts of HemeLB onto the GPU
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Organising computations and MPI operations 

- Collision - Streaming at domain edges 

- MPI exchange (send populations to neighbouring ranks)

- Collision - Streaming at mid-domain

- Overlap computations and MPI data exchange 

MPI rank # (n-1) MPI rank # n MPI rank # (n+1)

HemeLB_CPU

HemeLB_CPU: Strong scaling - SuperMUC-NG

MPI
CPU CPU

4. GPU CUDA version of HemeLB – Code Development 
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Optimisation strategies 

- Change of data organisation – Take advantage of how GPUs read from GPU global memory 

Array of Structures scheme (HemeLB_CPU) Structure of Arrays scheme (HemeLB_GPU)

- Further optimisations (future work): collected Structure of Arrays scheme 

4. GPU CUDA version of HemeLB – Code Development 
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Optimisation strategies 

- Use of different CUDA streams for all GPU operations

- Change the sequence of steps  
- Launch all kernels and then issue the MPI exchange 

Overlap kernels’ 
execution and 
memory copies 

CUDA kernels in 
different 
streams 

Dr. Brian J. N. Wylie

4. GPU version of HemeLB – Code Development 
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Vascular domains

Circle of Willis geometry  
system of arteries 

at the base of the brain
1.0 × 1010 sites 

Full human venous tree
1.5 × 109 sites 

Strong scaling performance

Arteries of the legs
60 × 106 sites 
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Strong scaling performance 

Summit (ORNL) – 4th in Top500 list (2022)

Circle of Willis (coW) - 1.0 × 1010 sites

• 90% perfect scaling performance on 6 144 V100 GPUs 
and continues strong scaling to 18 432 GPUs 
(approximately 2/3 of Summit’s capacity). 

• Strong scaling efficiency drops to 
o 72% at 12 288 GPUs and 
o 60% at 18 432 GPUs. 

exaPipe - 3.7 × 1010 sites 

• improved strong scaling efficiency: 74% at 18 432 GPUs
• increased computation to communication ratio

𝟕𝟓%ideal
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coW - 1.0 × 1010 sites 
• Summit (GPU): 42 CPU cores & 6 V100 GPUs 

per node (1 V100 GPU - 5120 CUDA Cores)

• SuperMUC-NG (CPU): 48 CPU cores per node

• Almost 2 orders of magnitude speed-up
(× 85)

• Newer version of HemeLB_GPU available
Additional × 1.9 speed-up

Large scale performance comparison – CPU and GPU (CUDA) versions of HemeLB

4. GPU CUDA version of HemeLB – Code Development 

~300 MLUPS per core

Porting HemeLB for human-scale blood flow simulation on GPUs 



• Loop unrolling (‘#pragma unroll 19’)
• Loop merging 
• Increase the number of registers per thread 

Compile with flag -maxrregcount 200
• Reduced memory traffic to/from

the GPU global memory

• speed-up factor (∼× 1.9)
Tested on Summit (V100 GPUs) 
with the legs’ arteries geom. 
(many outlets)
From 285 to 550 MLUPs per CPU/GPU 

Recent optimisations to the GPU (CUDA) version of HemeLB

4. GPU CUDA version of HemeLB – Code Development 

Arithmetic intensity* from 0.32 to 0.73
Compute work (FLOPS) to data movement (Bytes)

Stalled warps decreased by 82%

Profiling with Nsight Compute
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4. Porting the CUDA version of HemeLB_GPU to HIP

- Atos* ported the C++ CUDA based HemeLB_GPU code to HIP.
- HemeLB_GPU can now also run on AMD’s server GPUs (“hipified”)

What is HIP? 
- AMD’s dedicated GPU programming environment -> high performance kernels on GPU hardware.
- Portability solution for GPU ready applications written in CUDA or applications aiming to target different 

GPU architectures.
- Provides a source-to-source translator to convert CUDA code to HIP.

Two approaches to hipify a CUDA code:
• Hipify-perl: perl script using regular expressions to substitute CUDA calls and headers to HIP

• Easy to use, no CUDA dependencies
• Might encounter difficulty with complex C++ construct

• Hipify-clang: clang-based conversion tool
• Support complex construct (template, macro expansion, etc.) - Dependency with CUDA

*Paul Karlshöfer & Ludovic Hablot
Loris Lucido
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4. Porting the CUDA version of HemeLB_GPU to HIP

Similar syntax

Errors' handling

Streams’ 
synchronisation

GPU Kernels’ launch

Memory copies

Porting HemeLB for human-scale blood flow simulation on GPUs 
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4. Porting the CUDA version of HemeLB_GPU to HIP

Initial results
- Three different clusters
- Comparison not straightforward

- Different CPU, Network
- Different software stack & Linux distr. 

Bifurcation geom. (∼ 2 × 106 sites) Legs’ Arteries geom. (∼ 66 × 106 sites)

- Target  either AMD’s or NVIDIA’s GPU ( __HIP_PLATFORM_HCC__ OR __HIP_PLATFORM_NVCC__ )

- Test the “hipified” code on SUMMIT Vs CUDA code
target the same hardware (NVIDIA V100 GPUs)

Similar performance of the codes
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4. Porting the CUDA version of HemeLB_GPU to Intel’s oneAPI

What is oneAPI
“The Intel® oneAPI Base Toolkit (Base Kit) is a core set of tools and libraries for developing high-performance, data-centric 
applications across diverse architectures. It features an industry-leading C++ compiler that implements SYCL, an evolution 
of C++ for heterogeneous computing.”

Porting Process: CUDA to DPC++ code
- DPC++ Compatibility tool (dpct)

- Produces human readable DPC++ code
• with inline comments
• 80-90% of the code transformed

- Compile the produced DPC++ code 
clang++  -fsycl -fsycl-targets=nvptx64-nvidia-cuda … specify target hardware 
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4. Porting the CUDA version of HemeLB_GPU to Intel’s oneAPI

Porting HemeLB_GPU
- Single HemeLB collision-streaming CUDA kernel to DPC++

CUDA kernel 
Ported kernel 

- Testing the CUDA and ported codes on CSD3@Cambridge 
& Intel P630 GPU on  Intel Dev-Cloud

105 sites domain - 5 × 103 iterations

- Manually fix errors 
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4. Porting the CUDA version of HemeLB_GPU to Intel’s oneAPI

Porting HemeLB_GPU
- Full CUDA HemeLB_GPU code (ongoing work)

a. Generate a .json file
For projects using Make or CMake commands this will contain the build options of the input project’s 
files, i.e. include path and macros definitions (“intercept-build make”)

b. Run compatibility tool (dpct) with the .json file 

c. Manually fix any errors during conversion 

d. Compile (recover the compilation commands from the Makefile (e.g. make V=1)
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Summary
- HemeLB is a numerical code, based on the lattice Boltzmann Method (LBM) for simulating blood flow 

within human-scale vasculature domains. 

- HemeLB_GPU: GPU accelerated version using CUDA (NVIDIA GPUs).

- Highly scalable: CPU and GPU versions demonstrate excellent strong scaling performance to hundreds of 
thousands of CPU cores and tens of thousands of NVIDIA GPUs.

- At the arrival of exascale machines we will continue to develop HemeLB. 

- Making HemeLB_GPU platform agnostic - Porting HemeLB_GPU to HIP and oneAPI. 

- Aim for best performance on the widest range of machines (GPU accelerated HPC platforms) .

- More information from the HemeLB website www.hemelb.org

- Repository link:

- CPU code: https://github.com/UCL-CCS/HemePure

- GPU code: https://github.com/UCL-CCS/HemePure-GPU
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