
Porting HemeLB
for human-scale blood flow simulation

on GPUs and high performance computers

Zacharoudiou, I.1, McCullough, J.W.S.1, Lo, S.C.Y.1, Coveney, P.V.1,2

1 Centre for Computational Science, Department of Chemistry, University College
London, UK

2 Institute of Informatics, University of Amsterdam, The Netherlands

1. Introduction
• Motivation
• What is HemeLB
• Why porting to GPUs

2. Lattice Boltzmann Method
• Basic concepts – Algorithmic steps

3. HemeLB – Algorithmic implementation

4. GPU code development
• CUDA (NVIDIA)
• Porting the CUDA code to HIP (AMD)
• Porting the CUDA code to oneAPI (INTEL)

Porting HemeLB for human-scale blood flow simulation on GPUs

- Development of the virtual human

- Assist clinicians' ability to understand how a course of treatment will impact
a given individual

- Simulating the patient using a personalised digital replica

Patient specific modelling

- Conducting simulations for the virtual human
development of codes that can

execute and scale efficiently

on large-scale computing infrastructure

- Develop a GPU version of HemeLB*

Blood flow simulations on 3D vascular geometries.

1. Introduction - Motivation

* M.D. Mazzeo, P.V. Coveney (2008). Computer Physics Communications.

Porting HemeLB for human-scale blood flow simulation on GPUs

- Development of HemeLB* (heme from Hemodynamics)

- A high-performance, parallel lattice Boltzmann (LB) based fluid flow solver
for simulating blood flow on patient specific images obtained from medical
scans.

- C++ code parallelized using standard MPI communications

- Optimised for sparse geometries (vascular trees)

1. Introduction - HemeLB

* M.D. Mazzeo, P.V. Coveney (2008). Computer Physics Communications.

SuperMUC-NG
- MPI - Scalability of the code

- excellent strong scaling
performance up to hundreds
of thousands of CPU cores

Porting HemeLB for human-scale blood flow simulation on GPUs

Applications of HemeLB

- Cerebral aneurysms and blood flow

- Magnetic drug targeting*1

1. Introduction - HemeLB

*1 A. Patronis et al. (2018). Frontiers in physiology 9, 331.
*2 M.O. Bernabeu et al. (2014). Journal of the Royal Society Interface, 11(99), 20140543.

- Stent design

- Retinal vascular flow*2

- Coupling with organs,
e.g the heart

- Self-coupling of
HemeLB*3

(simultaneous
simulation of arterial
and venous vascular
trees)

*3 J.W. McCullough et al. (2021).
Interface focus, 11(1), 20190119.

Porting HemeLB for human-scale blood flow simulation on GPUs

1. Why porting HemeLB to GPUs?

- FRONTIER the first official exascale machine !!!

AMD GPUsNVIDIA GPUs

HPC machines accelerated by GPUs

Porting HemeLB for human-scale blood flow simulation on GPUs

1. Why porting HemeLB to GPUs?

- Graphics Processing Units (GPUs) – become commonplace on HPC machines

- Develop a GPU version of HemeLB (HemeLB_GPU)

- CUDA (Compute Unified Device Architecture)

- HIP (Heterogeneous-Compute Interface for Portability)

- Intel oneAPI
Intel’s hardware + NVIDIA + AMD

NVIDIA GPUs

AMD GPUs NVIDIA GPUs

Make HemeLB_GPU platform agnostic

Porting HemeLB for human-scale blood flow simulation on GPUs

• Equations of motion

• The lattice Boltzmann method

– Evolution equation of the particle distribution functions

– Conservation of mass and momentum

2. The lattice Boltzmann method (LBM)

NS eq. uupuuut)()(

0)(utContinuity eq.

I. Collision step:

II. Streaming step:

𝑖=0

18

𝑓𝑖
𝑒𝑞
=

𝑖=0

18

𝑓𝑖 =𝜌

𝑖=0

18

𝑓𝑖
𝑒𝑞
𝑒𝑖𝛼 =

𝑖=0

18

𝑓𝑖𝑒𝑖𝛼 =𝜌𝑢𝛼

𝐃𝟑𝐐𝟏𝟗

𝑓𝑖
′ 𝒓, 𝑡 = 𝑓𝑖 𝒓, 𝑡 −

1

𝜏
𝑓𝑖 𝒓, 𝑡 − 𝑓𝑖

𝑒𝑞
𝒓, 𝑡

𝑓𝑖 𝒓 + 𝒆𝑖Δ𝑡, 𝑡 + Δ𝑡 = 𝑓𝑖
′(𝒓, 𝑡)

𝑝 𝒓, 𝑡 = 𝑐𝑠
2𝜌 𝒓, 𝑡

𝜂 = 𝜌(𝒓, 𝑡)𝑐𝑠
2 𝜏 − Δ𝑡2

𝑓𝑖(𝒓, 𝑡)

Porting HemeLB for human-scale blood flow simulation on GPUs

2. The lattice Boltzmann method (LBM)

𝐃𝟑𝐐𝟏𝟗

Collide & Stream (propagate to the next lattice site)

- Collision step

𝑓𝑖
′ 𝒓, 𝑡 = 𝑓𝑖 𝒓, 𝑡 −

1

𝜏
𝑓𝑖 𝒓, 𝑡 − 𝑓𝑖

𝑒𝑞
𝒓, 𝑡

- Streaming step
𝑓𝑖 𝒓 + 𝒆𝑖Δ𝑡, 𝑡 + Δ𝑡 = 𝑓𝑖

′(𝒓, 𝑡)

Apply Boundary Conditions
Missing incoming 𝑓𝑖

′(𝑟, 𝑡)
Inlets / outlets / solid surfaces

Image: Krüger, Timm, et al. "The lattice Boltzmann
method." Springer International Publishing 10.978-3 (2017): 4-15.

Porting HemeLB for human-scale blood flow simulation on GPUs

3. HemeLB – Algorithmic implementation

General background – The lattice Boltzmann Algorithm Repeat # n time-Steps

Initialise
macroscopic

quantities 𝜌, 𝒖
Evaluate 𝒇𝒊

𝒆𝒒
(𝜌, 𝒖)

Collision Step

𝒇𝒊 , 𝒇𝒊
𝒆𝒒
 𝒇𝒊
′

Streaming Step

𝒇𝒊
′ 𝒇𝒊

Apply Boundary
Conditions (Walls /

Inlets – Outlets)

New time-step

𝒕 + 𝚫𝒕 𝒕

Update moments

of 𝒇𝒊 𝜌, 𝒖

Determine unknown 𝒇𝒊

𝒇𝒊
𝒆𝒒
 𝒇𝒊

Obtain macroscopic
quantities
𝑝 = 𝜌 𝑐𝑠

2 = 𝜌/3
𝒖

Porting HemeLB for human-scale blood flow simulation on GPUs

4. GPU CUDA version of HemeLB – Code Development

General background
Porting HemeLB to GPUs

HemeLB distinguishes 6 types of collision - streaming:

1. Inner domain: only fluid sites without any links to any type of
boundaries (walls or inlets/outlets),

2. Walls: fluid sites with a link to a solid surface,

3. Inlet,

4. Outlet,

5. Inlet with Walls and

6. Outlet with Walls.

Collision Step

𝒇𝒊 , 𝒇𝒊
𝒆𝒒
 𝒇𝒊
′

Streaming Step

𝒇𝒊
′ 𝒇𝒊

Apply Boundary
Conditions (Walls /

Inlets – Outlets)

Collision – Streaming kernels

GPU

Collision – Streaming

kernels

export the compute intensive
parts of HemeLB onto the GPU

Porting HemeLB for human-scale blood flow simulation on GPUs

Organising computations and MPI operations

- Collision - Streaming at domain edges

- MPI exchange (send populations to neighbouring ranks)

- Collision - Streaming at mid-domain

- Overlap computations and MPI data exchange

MPI rank # (n-1) MPI rank # n MPI rank # (n+1)

HemeLB_CPU

HemeLB_CPU: Strong scaling - SuperMUC-NG

MPI
CPU CPU

4. GPU CUDA version of HemeLB – Code Development

Porting HemeLB for human-scale blood flow simulation on GPUs

Optimisation strategies

- Change of data organisation – Take advantage of how GPUs read from GPU global memory

Array of Structures scheme (HemeLB_CPU) Structure of Arrays scheme (HemeLB_GPU)

- Further optimisations (future work): collected Structure of Arrays scheme

4. GPU CUDA version of HemeLB – Code Development

Porting HemeLB for human-scale blood flow simulation on GPUs

Optimisation strategies

- Use of different CUDA streams for all GPU operations

- Change the sequence of steps
- Launch all kernels and then issue the MPI exchange

Overlap kernels’
execution and
memory copies

CUDA kernels in
different
streams

Dr. Brian J. N. Wylie

4. GPU version of HemeLB – Code Development

Porting HemeLB for human-scale blood flow simulation on GPUs

Vascular domains

Circle of Willis geometry
system of arteries

at the base of the brain
1.0 × 1010 sites

Full human venous tree
1.5 × 109 sites

Strong scaling performance

Arteries of the legs
60 × 106 sites

Porting HemeLB for human-scale blood flow simulation on GPUs

Strong scaling performance

Summit (ORNL) – 4th in Top500 list (2022)

Circle of Willis (coW) - 1.0 × 1010 sites

• 90% perfect scaling performance on 6 144 V100 GPUs
and continues strong scaling to 18 432 GPUs
(approximately 2/3 of Summit’s capacity).

• Strong scaling efficiency drops to
o 72% at 12 288 GPUs and
o 60% at 18 432 GPUs.

exaPipe - 3.7 × 1010 sites

• improved strong scaling efficiency: 74% at 18 432 GPUs
• increased computation to communication ratio

𝟕𝟓%ideal

Porting HemeLB for human-scale blood flow simulation on GPUs

coW - 1.0 × 1010 sites
• Summit (GPU): 42 CPU cores & 6 V100 GPUs

per node (1 V100 GPU - 5120 CUDA Cores)

• SuperMUC-NG (CPU): 48 CPU cores per node

• Almost 2 orders of magnitude speed-up
(× 85)

• Newer version of HemeLB_GPU available
Additional × 1.9 speed-up

Large scale performance comparison – CPU and GPU (CUDA) versions of HemeLB

4. GPU CUDA version of HemeLB – Code Development

~300 MLUPS per core

Porting HemeLB for human-scale blood flow simulation on GPUs

• Loop unrolling (‘#pragma unroll 19’)
• Loop merging
• Increase the number of registers per thread

Compile with flag -maxrregcount 200
• Reduced memory traffic to/from

the GPU global memory

• speed-up factor (∼× 1.9)
Tested on Summit (V100 GPUs)
with the legs’ arteries geom.
(many outlets)
From 285 to 550 MLUPs per CPU/GPU

Recent optimisations to the GPU (CUDA) version of HemeLB

4. GPU CUDA version of HemeLB – Code Development

Arithmetic intensity* from 0.32 to 0.73
Compute work (FLOPS) to data movement (Bytes)

Stalled warps decreased by 82%

Profiling with Nsight Compute

Porting HemeLB for human-scale blood flow simulation on GPUs

4. Porting the CUDA version of HemeLB_GPU to HIP

- Atos* ported the C++ CUDA based HemeLB_GPU code to HIP.
- HemeLB_GPU can now also run on AMD’s server GPUs (“hipified”)

What is HIP?
- AMD’s dedicated GPU programming environment -> high performance kernels on GPU hardware.
- Portability solution for GPU ready applications written in CUDA or applications aiming to target different

GPU architectures.
- Provides a source-to-source translator to convert CUDA code to HIP.

Two approaches to hipify a CUDA code:
• Hipify-perl: perl script using regular expressions to substitute CUDA calls and headers to HIP

• Easy to use, no CUDA dependencies
• Might encounter difficulty with complex C++ construct

• Hipify-clang: clang-based conversion tool
• Support complex construct (template, macro expansion, etc.) - Dependency with CUDA

*Paul Karlshöfer & Ludovic Hablot
Loris Lucido

Porting HemeLB for human-scale blood flow simulation on GPUs

4. Porting the CUDA version of HemeLB_GPU to HIP

Similar syntax

Errors' handling

Streams’
synchronisation

GPU Kernels’ launch

Memory copies

Porting HemeLB for human-scale blood flow simulation on GPUs

* Loris Lucido (ATOS) – AMD GPU Workshop 2022 (SURF.NL)

4. Porting the CUDA version of HemeLB_GPU to HIP

Initial results
- Three different clusters
- Comparison not straightforward

- Different CPU, Network
- Different software stack & Linux distr.

Bifurcation geom. (∼ 2 × 106 sites) Legs’ Arteries geom. (∼ 66 × 106 sites)

- Target either AMD’s or NVIDIA’s GPU (__HIP_PLATFORM_HCC__ OR __HIP_PLATFORM_NVCC__)

- Test the “hipified” code on SUMMIT Vs CUDA code
target the same hardware (NVIDIA V100 GPUs)

Similar performance of the codes

Porting HemeLB for human-scale blood flow simulation on GPUs

4. Porting the CUDA version of HemeLB_GPU to Intel’s oneAPI

What is oneAPI
“The Intel® oneAPI Base Toolkit (Base Kit) is a core set of tools and libraries for developing high-performance, data-centric
applications across diverse architectures. It features an industry-leading C++ compiler that implements SYCL, an evolution
of C++ for heterogeneous computing.”

Porting Process: CUDA to DPC++ code
- DPC++ Compatibility tool (dpct)

- Produces human readable DPC++ code
• with inline comments
• 80-90% of the code transformed

- Compile the produced DPC++ code
clang++ -fsycl -fsycl-targets=nvptx64-nvidia-cuda … specify target hardware

Porting HemeLB for human-scale blood flow simulation on GPUs

4. Porting the CUDA version of HemeLB_GPU to Intel’s oneAPI

Porting HemeLB_GPU
- Single HemeLB collision-streaming CUDA kernel to DPC++

CUDA kernel
Ported kernel

- Testing the CUDA and ported codes on CSD3@Cambridge
& Intel P630 GPU on Intel Dev-Cloud

105 sites domain - 5 × 103 iterations

- Manually fix errors

Porting HemeLB for human-scale blood flow simulation on GPUs

4. Porting the CUDA version of HemeLB_GPU to Intel’s oneAPI

Porting HemeLB_GPU
- Full CUDA HemeLB_GPU code (ongoing work)

a. Generate a .json file
For projects using Make or CMake commands this will contain the build options of the input project’s
files, i.e. include path and macros definitions (“intercept-build make”)

b. Run compatibility tool (dpct) with the .json file

c. Manually fix any errors during conversion

d. Compile (recover the compilation commands from the Makefile (e.g. make V=1)

Porting HemeLB for human-scale blood flow simulation on GPUs

Summary
- HemeLB is a numerical code, based on the lattice Boltzmann Method (LBM) for simulating blood flow

within human-scale vasculature domains.

- HemeLB_GPU: GPU accelerated version using CUDA (NVIDIA GPUs).

- Highly scalable: CPU and GPU versions demonstrate excellent strong scaling performance to hundreds of
thousands of CPU cores and tens of thousands of NVIDIA GPUs.

- At the arrival of exascale machines we will continue to develop HemeLB.

- Making HemeLB_GPU platform agnostic - Porting HemeLB_GPU to HIP and oneAPI.

- Aim for best performance on the widest range of machines (GPU accelerated HPC platforms) .

- More information from the HemeLB website www.hemelb.org

- Repository link:

- CPU code: https://github.com/UCL-CCS/HemePure

- GPU code: https://github.com/UCL-CCS/HemePure-GPU

Porting HemeLB for human-scale blood flow simulation on GPUs

We acknowledge:
1. Funding support from:

(a) the European Commission CompBioMed Centre of Excellence
(b) The UK Engineering and Physical Sciences Research Council
(c) the Medical Research Council (MRC)
(d) special funding from the UCL Provost.

2. The Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for providing computing time
on the GCS Supercomputer SuperMUC-NG at Leibniz Supercomputing
Centre (www.lrz.de)

3. PRACE for awarding us access to JUWELS at GCS@FZJ, Germany and Piz Daint at CSCS,
Switzerland.

4. The Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, USA, for
access to SUMMIT.

Acknowledgements

http://www.lrz.de/

