

SiPearl Outlook

Teratec

Jean-Marc Denis

Chief Strategy Officer jean-marc.denis@sipearl.com

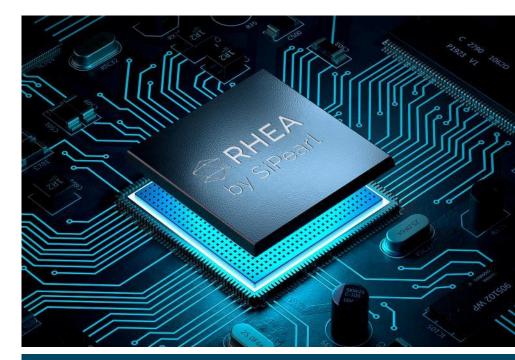
-SiPearl corporate overview

The European Server Processor Solution

HQ: Maisons-Laffitte (Paris), France

Incorporated in June 2019

CEO and Founder, Philippe Notton


Design centers:

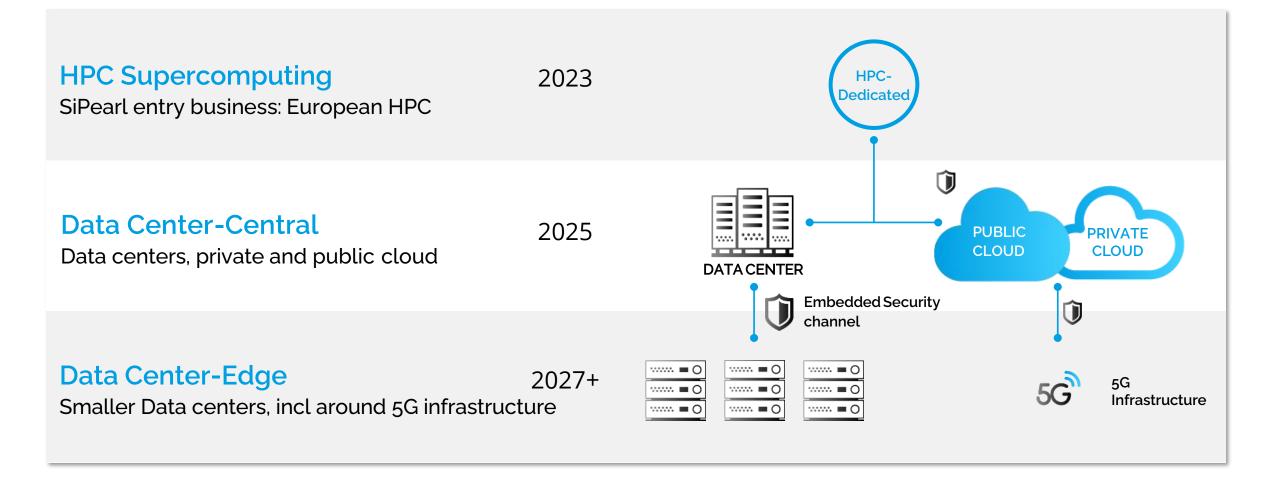
- France: Maisons-Laffitte, Massy Palaiseau, Sophia Antipolis, Grenoble
- Germany: Duisburg (Düsseldorf)
- Spain: Barcelona

Key Personnel from Intel, Atos, ST, Marvell, Nokia, Mstar-Mediatek

HPC Targeted Architecture based on Arm Neoverse V1 cores

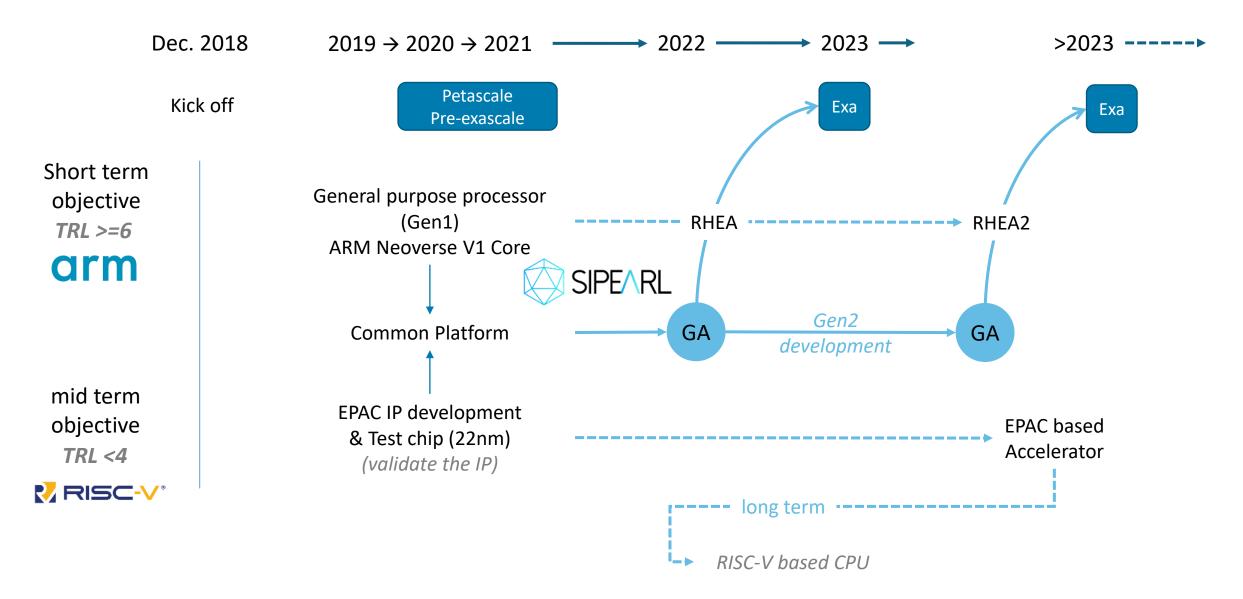
+100 employees today, targeting >1,000 in 2025

-SiPearl offices We are close to our partners and customers



-Sipearl extensions

 $\langle \rangle$


 \bigcirc

SIPEARL CORPORATE VISION AND STRATEGY

Our business model is sustainable over time

OVERALL ROADMAP

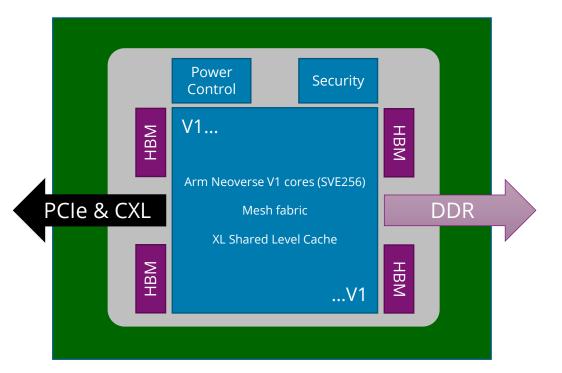
EPI COMMON PLATFORM ENABLES EU ECOSYSTEM

- SiPearl chartered is also to develop the European Ecosystem
- SiPearl shares IP and benefits from IP ecosystem
 - Accelerator development (RISC-V based)
 - Al (tensor)
 - Vector processing
 - Stencil processing
 - FPGA
 - ...
 - Packaging
 - P IP development
- Staged integration: start with socket-to-socket connections and move into package (multi-chiplets) over time

Rhea a Processor for the Exa era

- At the heart of Rhea

With its high-performance, low-power Arm Neoverse V1 architecture, Rhea will meet the needs of all supercomputing workloads.


Key features

Core	 Arm architecture Neoverse V1 cores SVE 256 per core supporting 64/32/BF16 and Int8 ArmVirtualization extensions
SoC	 Arm mesh fabric Advanced RAS support including Arm RAS extensions Link protection for NoC & high-speed IO ECC support for selected memory
Cache	Large L3 (Shared Level Cache)RAS supported for all cache levels
Memory	 HBM2e And DDR5 ECC for memory and link protection for controllers
High Speed I/O	PCIe, CCIX & CXLRoot and endpoint support
Other I/O	- USB, GPIO, SPI, I ² C
Power Management	 Power management block to optimize perf/watt accross use cases and workloads.
Security Block Support	 Secure boot and secure upgrade Crypto True random number generation Made in Europe

Rhea will deliver extraordinary real compute performance and efficiency with an unmatched Bytes/Flops ratio.

SIPEARL

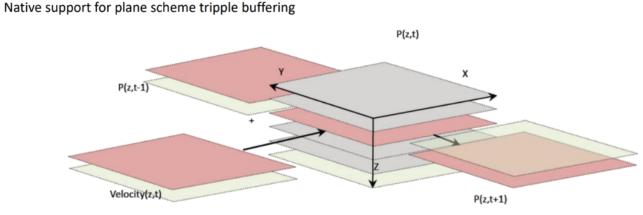
PROCESSOR CORES INSIDE RHEA

	Total: x V1 + 2 M7 Arm, 29 R	Remarks	
Arm Neoverse V1 cores	Arm Neoverse V1	arm	Including spare V1s.
Arm cortex-M7 cores	2x Arm cortex-M7 = 2.	arm	for SCP and MCP subsystems.
Risc-V in PMS	1x Ariane + 1x ZeroRiscy = 2.	RISC-V°	
Risc-V in SEG	1x Ariane = 1.	🔀 RISC-V°	SEG for security element.
Risc-V in STXs of 2x ERACs	2x (1x Ariane + 8x Snitch) = 18.	🔀 RISC-V°	
Risc-V in VRPs of 2x ERACs	2x (4x VRP core) = 8.	🔀 RISC-V°	VRP core is a modified Risc-V core.
SPUs in STXs of 2x ERACs	2x (2x SPU cores) = 4.	💦 RISC-V°	SPU core is a proprietary core.

- Some additional EU designed IP (power management, clock, cryptography) not counted here
- Not including µC cores used in Synopsys DDR controllers for the PHY training.

Core	Performance for the core.
V1	2x 256 SVE = 16 DP FLOPs/cycle; 2.5GHz@N6
Snitch	1x 64b FPU = 2 DP FLOPs/cycle; >1GHz@N6
SPU	4x 32b FPU = 8 SP FLOPs/cycle; >1GHz@N6

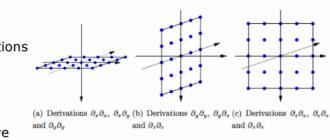
STENCIL: DESIGNED FOR CLASSICAL HPC MODELS


- Designed in first place for finite difference and finite 1. elements algorithms (example: CFD, FDTD, O&G)
- Expanded to support wider class of algorithms 2. while retaining efficiency
- Ease of programmability as a design goal 3.
 - Accelerator for physicists rather than computer scientist
 - Also applicable to other domains e.g. weather forecasting, CFD and energy

<pre>#pragma omp target { #pragma stx loop for (int z = stencil_radius; z < dim_z - stencil_radius; z++) { #pragma stx loop(interleave) for (int y = stencil_radius; y < dim_y - stencil_radius; y++) } }</pre>	Shown: ISO code fron
<pre>{ #pragma stx loop for (int x = stencil_radius; x < dim_x - stencil_radius; x++) { float dxyz = 0.0f; for (int r = 1; r <= stencil_radius; r++) { float const weight = parameter (r - 1); } }</pre>	User can w expressic accesses, "stru is ma
<pre>dxyz += (device_pressure_wavefield[z + r][y][x]</pre>	data[x] data[r] (n data[x][y] or d
dxyz += (device_pressure_wavefield[z][y][x + r] + device_pressure_wavefield[z][v][x - r]	data[x + (2

stencil example source m our "spu-runtime" repository.

write natural, complex Fraunhofer ons as indices for data ructured data configuration ade automatically.


(HW-loop variable) non-HW loop variable) data[x +/- r] data[y][x] (arbitrary order) 2 * r / 3)][y – ((r + 4) / 2)]

Usecase: RTM TTI

Structure

- Intersecting planes of mixed derivations around a center point
- P- and O-wavefields
- Velocity wavefield
- 4 additional physical parameter wave fields
- High arithmetic intensity: 5 - 18 flops/byte

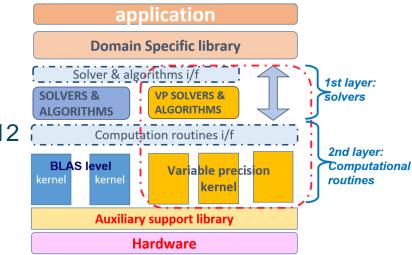
Supporting

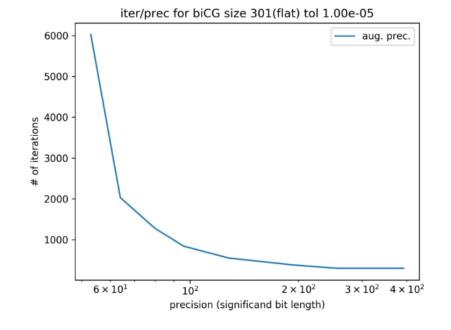
- RTM TTI 1-pass
- RTM TTI 2-pass
- Micro application kernel incorporating forward and backward propagation
- Kernel optimizations included (common subexpression elemination, precomputation, plane scheme, etc.)

 \mathbb{N}

-Variable Precision processor (VRP)

Definition

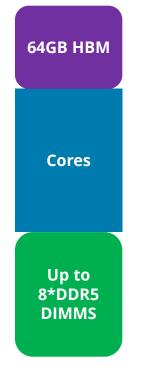

- The Variable Precision Processor (VRP) is a domain specific accelerator for scientific computing, specially tailored for the accurate computation (up to 512 bits fractional parts) of large systems of equations.
- It supports IEEE 754 extendable format in memory with byte-aligned data format to optimize memory usage and computing efficiency.


Motivation

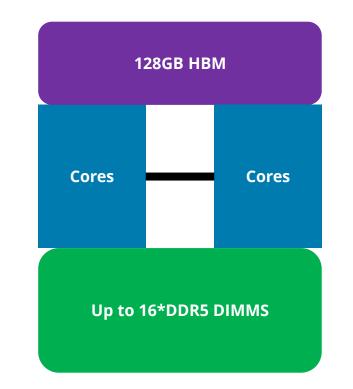
- Reduce conjugate gradient (CG), bi-CG iteration count
- Simplify preconditioning
- Allows direct solvers instead of indirect (matrix with bad conditioning number)
- Generally valid for many other algorithms, in particular for Krylov-based projective resolution.
- More investigation on lanczos based eigenvalue and singular-value solvers

Performances

- It targets 10x to 100x acceleration of variable precision
- computation (compared to software solutions).



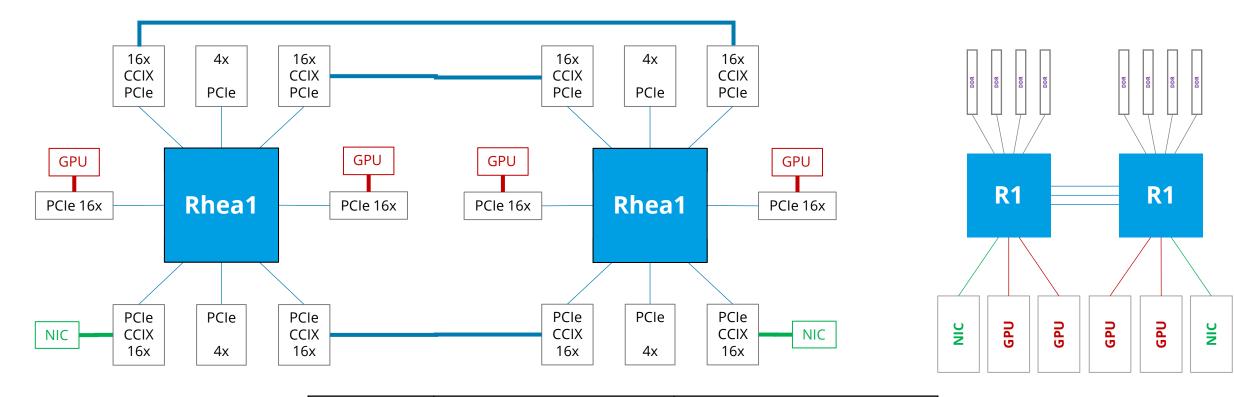
SIPE/RL 13


- Rhea1 – Memory configurations

Single socket

Two different / independent memory spaces

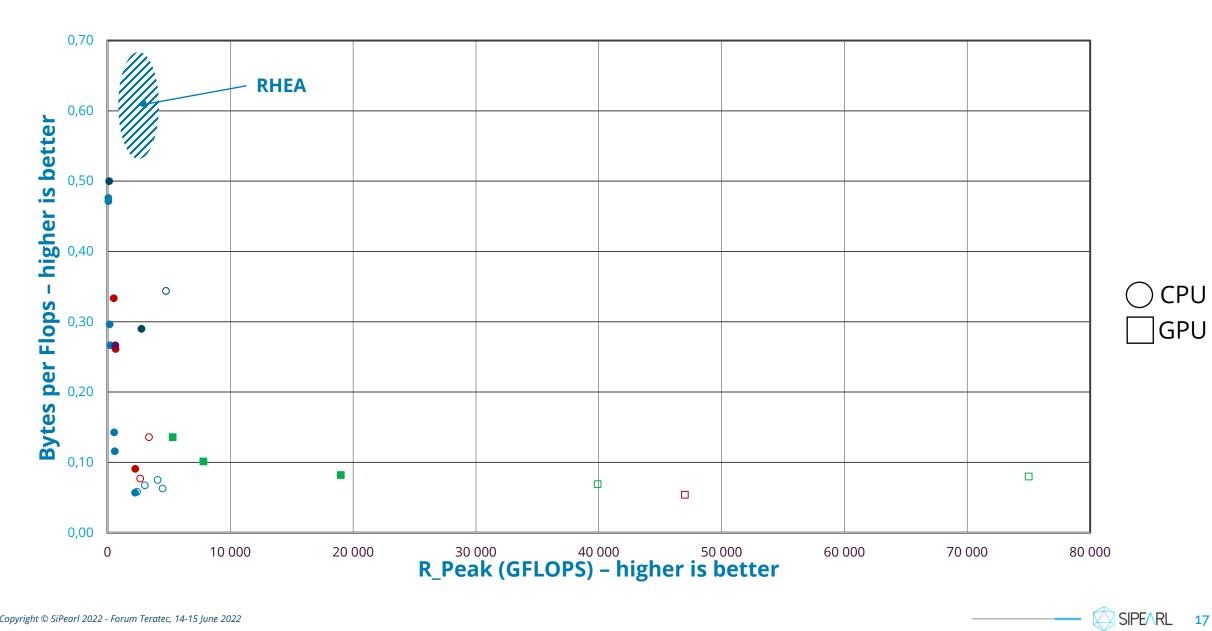
dual sockets



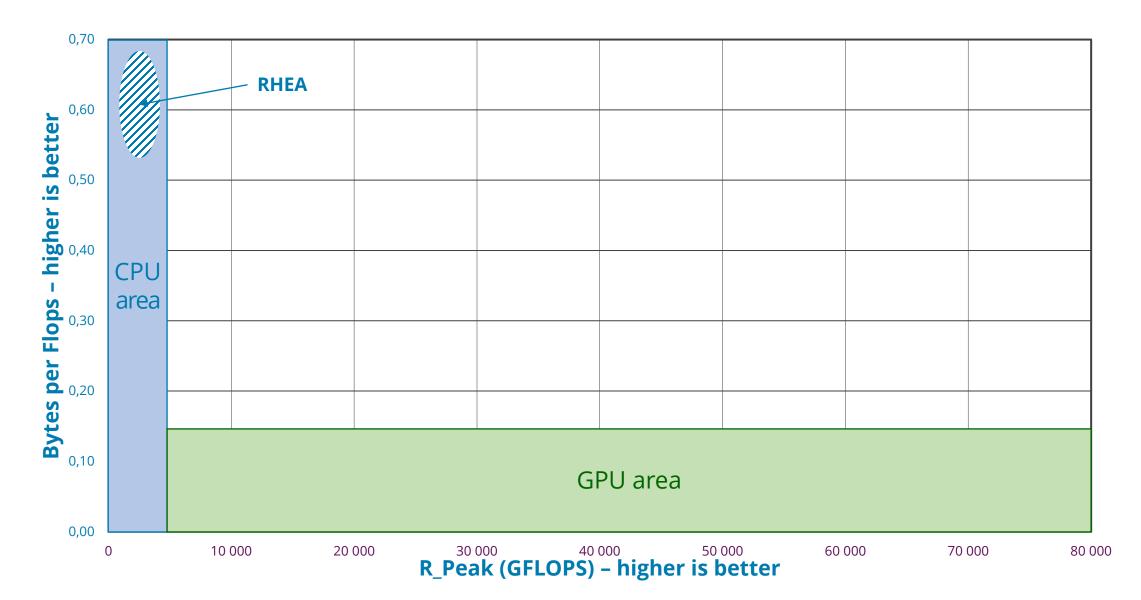
Two different / independent memory spaces

- 1 unified (CC-NUMA) HBM space
- 1 unified (CC-NUMA) DDR space

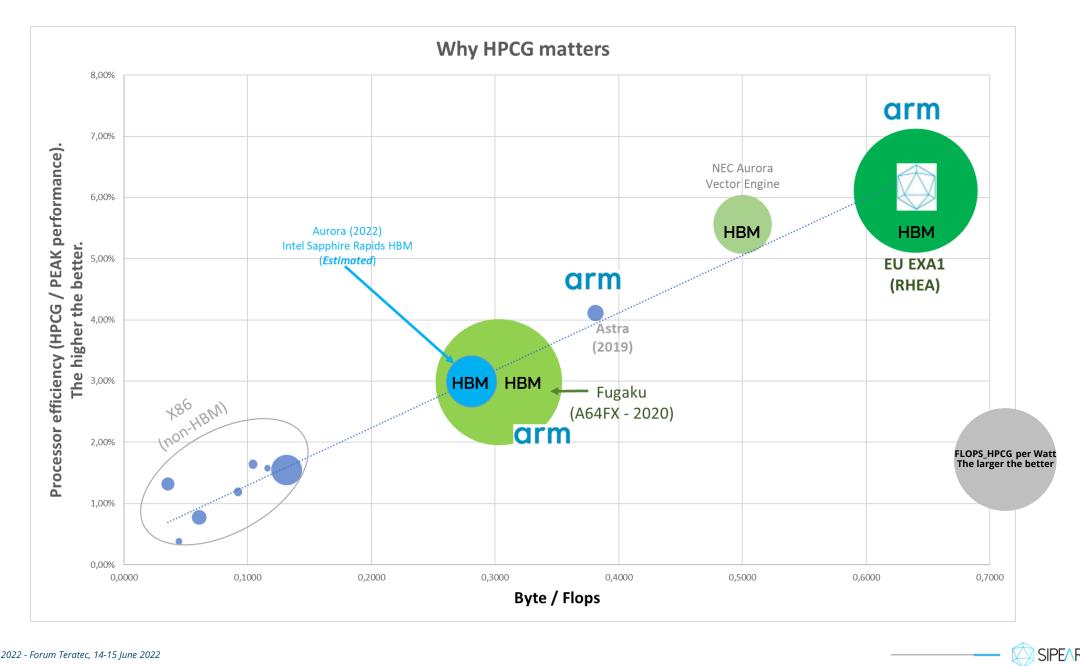
- Atos Reference Board with Rhea1


				R1a			R1b		
CCIX (16x) → 3				CCIX 16x to R1b	GPU 16x	NIC 16x	CCIX 16x to R1a	GPU 16x	NIC 16x
GPU (16x) → 4	PCle CCIX	16x	4	3		1	3		1
• NIC (16x) → 2	PCle	16x	2		2			2	
	PCle	4x	2						

SIPEARL 15



Performance



SIPEARL 17

SIPEARL 18

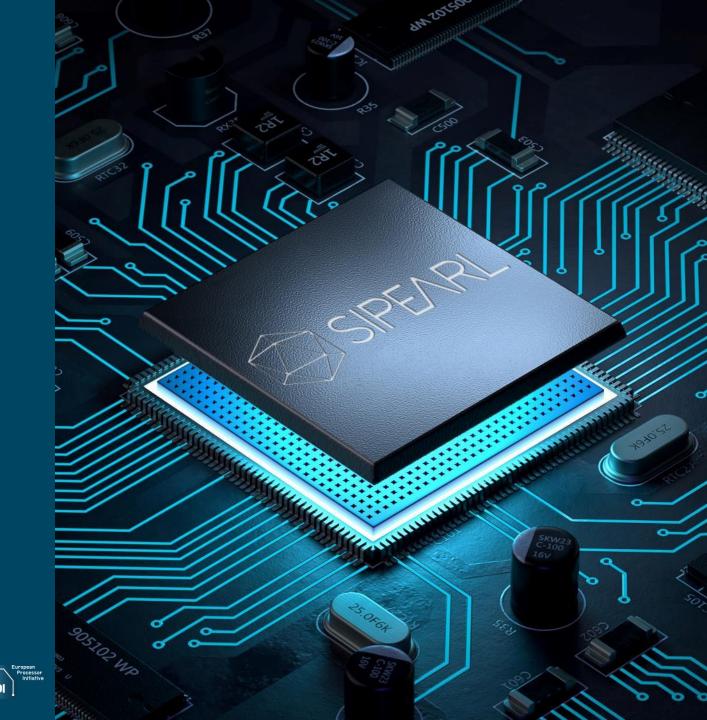
 \bigcirc

INSTRUCTION LATENCY (SMALLER IS BETTER)

best in class	Sort-of-ex-aequo					
[I		1
VFP64, full width	Fujitsu	Arm	Intel	Intel	AMD	AMD
Latency	A64FX	Neoverse V1	Broadwell	Skylake-X	Rome / Zen2	Milan / Zen 3
Add	9	2	3	4	3	3
Mul	9	3	3	4	3	3
FMA	9	4 (2 if chained)	5	4	5	4
Div	43	7 to 15	19-23	24	13	13,5
Sqrt	43	7 to 16	27-29	28-29	20	20
Throughput						
Add	2	2	1	2	2	2
Mul	2	2	2	2	2	2
FMA	2	2	2	2	2	2
Div	1/43	1/14 to 1/7	1/16	1/16	1/5	1/(4.5)
Sqrt	1/43	1/14 to 1/7	1/28 to 1/16	1/24 to 1/18	1/9	1/9
Max SIMD	SVE [512]	SVE [256]	AVX2 [256]	AVX-512	AVX2 [256]	AVX2 [256]
	NEON, scalar have the same throughput	Neon, Scalar have twice the throughput (4x128 instead of 2x256)		XCC-based cores; SSE, AVX, Scalar have the same throughput	SSE, AVX, Scalar have the same throughput	SSE, AVX, Scalar have the same throughput
		https://developer.arm.com/do		https://www.agner.org/optimi ze/instruction_tables.pdf	https://www.agner.org/optimi ze/instruction_tables.pdf	https://www.agner.org/optimi ze/instruction_tables.pdf

About SiPearl

Created by Philippe Notton, SiPearl is designing the high-performance, low-power microprocessor for European exascale supercomputers. This new generation of microprocessors will enable Europe to set out its technological sovereignty in strategic high performance computing markets such as artificial intelligence, medical research or climate modelling.


SiPearl is working in close collaboration with its 27 partners from the European Processor Initiative (EPI) consortium - leading names from the scientific community, supercomputing centres and industry - which are its stakeholders, future clients and end-users.

SiPearl employs 109^{*} people in France, Germany and Spain. Its first range of microprocessors, Rhea, will be launched at the end of the year.

The company is supported by the European Union (funding from the European Union's Horizon 2020 research and innovation program under specific grant agreement no.826647).

* as of June 15th 2022

Contact Jean-Marc Denis Chief Strategy Officer jean-marc.denis@sipearl.com

