
e-Seminar #29
OpenMP in the Exascale Era

18 January 2023

The e-Seminar will start
at 2pm CET / 1pm GMT

A Centre of Excellence in Computa3onal Biomedicine

e-Seminar series

Moderator:
Tim Weaving

(University College London)

Presenter:
Dr. Mark Bull
(EPCC, University of Edinburgh)

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 823712

The e-Seminar series is run
in collabora2on with:

https://insilicoworld.slack.com/
archives/C0151M02TA4

18 January 2023

Welcome!

e-Seminar series

A Centre of Excellence in Computational Biomedicine

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 823712

The e-Seminar series is run
in collabora2on with:

https://insilicoworld.slack.com/
archives/C0151M02TA4

Moderator:
Tim Weaving

(University College London)

e-Seminar #29
OpenMP in the Exascale Era

Presenter:
Dr. Mark Bull
(EPCC, University of Edinburgh)

Overview
• What is OpenMP?

• Why is OpenMP relevant for exascale computing?

• Hybrid MPI and OpenMP programs

• OpenMP for GPUs

• OpenMP tasks for irregular parallelism

• Why use OpenMP (and not some other API)?

CompBioMed e-Seminar 318/01/2023

What is OpenMP?
• OpenMP is an API designed for programming shared memory parallel

computers.

• OpenMP is a set of extensions to Fortran, C and C++

• The extensions consist mostly of compiler directives
• also runtime library routines and environment variables

• Open standard administered by the OpenMP Architecture Review Board
• 30+ members from industry, academia, government labs
• https://www.openmp.org/
• started in the mid-1990s

18/01/2023 CompBioMed e-Seminar 4

https://www.openmp.org/

Example

#pragma omp parallel for
for (int i=0; i<n; i++){

for (int j=0; j<m; j++){
b[i][j] += a[i][j] * c[j];

}
}

OpenMP is much more that just parallelizing loops, but this is the most
commonly used feature!

18/01/2023 CompBioMed e-Seminar 5

OpenMP and Exascale

• Large scale HPC systems are not shared-memory!
• each node has its own memory

• Usually program distributed memory systems using a message-
passing library
• almost always MPI!

• OpenMP can be used to
• exploit mulFcore nodes more efficiently
• program GPUs with a high-level vendor-neutral API

18/01/2023 CompBioMed e-Seminar 6

Exascale systems
• More powerful systems achieved by:
• more cores per node
• adding GPUs
• not so much by adding more nodes

• UK naEonal systems
• ARCHER (2013-2021): 4920 nodes, 24 cores per node
• ARCHER2 (2021-): 5860 nodes, 128 cores per node

• FronEer (first exascale system)
• 9472 nodes, 64 cores + 4 GPUs per node

Hybrid MPI + OpenMP

• Hybrid MPI + OpenMP applicaEons are becoming increasingly
common on HPC systems
• Can both reduce memory usage and/or improve scalability
• SemanEcs are straighOorward
• especially if there are no MPI calls inside OpenMP parallel regions

• But…we need to choose how many OpenMP threads to run per MPI
process
• performance is a complex trade-off between mulFple sources of overhead
• difficult to idenFfy any opFmizaFon opportuniFes

CompBioMed e-Seminar 818/01/2023

Poten>al advantages of MPI + OpenMP
• Reducing memory usage

• fewer copies of replicated data structures
• less data in halo regions

• Exploiting additional levels of parallelism
• easier do this by adding OpenMP than trying to it in pure MPI

• Reducing computation
• some MPI codes replicate parts of the computation

• Reducing load imbalance
• easier and cheaper to balance load between threads than

between processes
• Reducing communication costs

• don’t communicate unused data
• fewer ranks in collectives
• fewer (but maybe larger) point-to-point messages

CompBioMed e-Seminar 918/01/2023

Performance piAalls
• Most hybrid applications are written (for simplicity) in master-only

style – all MPI calls are outside of OpenMP parallel regions
• OpenMP threads are necessarily idle during MPI communications
• cache misses occur if master thread communicates data written/read by other threads

• Implicit point-to-point synchronisation via messages may be
replaced by (more expensive) barriers.

• loose thread-to-thread synchronisation is hard to do in OpenMP

• In a pure MPI code, the intra-node messages will often be naturally
overlapped with inter-node messages

• harder to overlap inter-thread communication with inter-node messages

• OpenMP can suffer from false sharing and NUMA effects
• MPI naturally avoids these

CompBioMed e-Seminar 1018/01/2023

Typical trends
If we keep the total number of cores fixed and increase the number
of threads per MPI process:

• Total Fme spent in MPI reduces 😀
• Load imbalance between processes reduces 😀
• Amount of computaFon may reduce 😀

• Thread idle Fme increases ☹
• Thread synchronizaFon Fme increases (mostly barriers) ☹
• Load imbalance between threads may increase ☹
• Use of memory system may get less efficient (false sharing,

NUMA effects) ☹

CompBioMed e-Seminar 1118/01/2023

Experimental setup
Hardware

• HPE Cray EX system

• 2 x AMD EPYC 7742, 2.25 GHz, 64-core chips per node (128 cores/node)

• 4 NUMA regions per socket (1 NUMA region per 16 cores)

CompBioMed e-Seminar 12

• 16MB L3 cache per 4 cores
• HPE Slingshot network

SoBware
• MPI: HPE Cray MPICH2
• OpenMP: GNU compilers
• Profiling tool: Scalasca

18/01/2023

Case study - CASTEP
• CASTEP - density functional theory software package for electronic

structure calculations using plane waves
• Version 20.11 - GCC version 10.2, Intel MKL 19, Cray-mpich 8.1.4, Cray-fftw

3.3.8.11
• Al3x3 benchmark

CompBioMed e-Seminar 13

0
100
200
300
400
500
600
700
800

1 2 4 8 16

Ti
m
e
(s
)

Nodes

1T
2T
4T
8T
16T

18/01/2023

CASTEP – profiling

0

50000

100000

150000

200000

250000

1 2 4 8 16

To
ta

l L
m

e
(s

)

No. of OpenMP threads per MPI process
Computation MPI Point-to-point
MPI Collectives MPI Wait at barrier
OpenMP fork+barrier Idle threads

Threads give big
savings in compute
and comms Lmes
(mostly in FFT library)

But….

FFT library comms are
single threaded, so
idle Lme outweighs
savings above 8
threads per process

8 nodes (= 1024 cores)
CompBioMed e-Seminar 1418/01/2023

Case study - CoMD
• CoMD Proxy ApplicaEon – classical molecular

dynamics using link cells
• GCC version 8.3, Cray-mpich 8.1.4
• 1283 atoms

CompBioMed e-Seminar 1518/01/2023

CoMD – profiling
Threads give some
savings in compute
Lme

Load imbalance
across processes is
reduced

But..

Load imbalance
across threads
appears

Idle Lme becomes
significant

8 nodes (= 1024 cores)

0

1000

2000

3000

4000

5000

6000

1 2 4 8 16

To
ta

l L
m

e
(s

)

No. of OpenMP threads per MPI process

Computation MPI Point-to-point
MPI Collectives OpenMP fork + barrier
OpenMP wait Idle threads

CompBioMed e-Seminar 1618/01/2023

Accelerator support in OpenMP
• Not GPU specific

• Not many other interesGng devices at the moment,
however!

• Fully integrated into OpenMP for the CPU
• Introduced in OpenMP 4.0, with significant

revisions/extensions in 4.5 and 5.0, 5.1, 5.2.
• Similar to, but not the same as, OpenACC direcFves.

• OpenACC is an alternaGve standard for offloading to GPUs
• Developed before OpenMP 4.0

• Current, usable implementaFons of OpenMP for GPUs
include: NVIDIA, Cray, IBM, LLVM/clang, gcc, Intel

17

OpenMP for GPUs

• Higher level interface than CUDA/HiP
• Compiler/runGme does a lot of the work for you
• Some loss of performance in some cases

• Includes constructs that map to hierarchical
hardware on GPUs (SMs and threads)

• Vendor-neutral API
• Good for portability and soSware sustainability

• Be]er Fortran support

Each team has its
own master thread

Each team creates a
separate parallel
region

Example
#pragma omp target teams loop map(to:a,c)\
map(tofrom:b)collapse(2)
for (int i=0; i<n; i++){

for (int j=0; j<m; j++){
b[i][j] += a[i][j] * c[j];

}
}

• Map clauses specify movement of data between CPU and GPU memories.
• Collapse clause will parallelise both loops
• More control is possible if desired…

18/01/2023 CompBioMed e-Seminar 19

Performance issues
• Transferring data between host and device is expensive
• May improve in future hardware designs

• Need to minimize this as much as possible
• Don’t transfer anything that’s not required
• Keep data on the device as far as possible (using target data

regions)

• GPUs need lots of threads to work efficiently
• Need to expose a lot of parallelism – much more than for the CPU
• For nested loops can use the collapse clause to parallelise two or

more loops in the nest

20

OpenMP tasks

• Most parallelism in scientific applications comes from parallel for/do
loops
• OpenMP handles these very well!

• But there are other cases
• While loops
• Recursion
• Functional parallelism
• Irregular, nested parallelism

What are OpenMP tasks?

• Tasks are independent units of work
• Tasks are composed of:
• a block of code to execute
• data to compute with (per-task private

copies)

• Tasks are assigned to threads for
execution.
• programmer has little control over how

this is done

• Decouples specification of parallelism
from mapping to threads

22

Serial

Parallel

Power of OpenMP tasks

OpenMP tasks are powerful because:

• They can be nested: a task may itself generate more tasks
• More flexible than nested loops or nested teams of threads

• We can specify dependencies between tasks, if some tasks need to be
executed before others
• Enables a coarse-grain dataflow programming style
• Very effective in some cases (e.g. dense linear algebra, PLASMA library)

Tasks for exascale?

• For ease of implementaEon, many applicaEons have more
synchronizaEon than is really necessary
• e.g. barriers at the end of parallel loops
• also causes load imbalance

• MPI interface supports overlapping of computaEon and
communicaEon
• most MPI implementaFons don’t actually work very well: library doesn’t have

access to compute resources to make progress in the background

Tasks everywhere!
• If we could express all the parallelism as tasks with dataflow

dependencies, including the MPI calls, we could potenEally solve both
problems!
• Unfortunately, le]ng MPI calls happen out-of-order causes problems
• message mismatches, deadlocks

• Need a special MPI library such as TAMPI (developed at BSC)
integrated with the tasking runEme.
• Basic idea: when an MPI call blocks, the task containing it is

suspended, and only resumes when the message arrives.
• meanwhile, the thread/core can run other tasks

• Not without problems: debugging and performance analysis is hard!
• For more details see https://zenodo.org/record/7524540

Why use OpenMP and not some other API?

• OpenMP is a mature (but sEll evolving standard)!

• OpenMP has a robust standards process and very wide support from
vendors/compiler implementers

• OpenMP is not perfect: what are the other opEons?

Alterna>ves for CPUs

Posix threads (pthreads)
• Widely available, open standard
• Lower level than OpenMP, lacks

support for parallel loops,
reductions, tasks etc.

• No standard Fortran interface

C++ threads
• C++ only(!)
• Better integration with latest

C++ features than OpenMP
• Also quite low-level
• Some issues with control over

threads

TBB
• C++ only
• Intel specific
• Has some higher level features

like OpenMP

MPI shared memory
• No interoperability issues
• Limited support for loop

parallelism, load balancing
tasks

Alterna>ves for GPUs

CUDA/HiP
• Robust, widely used
• Lower level that OpenMP
• Vendor specific (more-or-less)
• Fortran support is not that great

SYCL (DPC++)
• C++ only
• Open standard
• Not as mature as OpenMP
• Not many implementaFons

OpenCL
• Very low-level
• Open standard
• Performance is not great

OpenACC
• Similar to OpenMP

(directives)
• More mature than OpenMP
• Not many implementations

Summary

• OpenMP is a well-establish standard for shared memory and
accelerator offload programming

• The design of large-scale systems means it has a role to play for
exascale compuEng
• both for CPUs and GPUs

• OpenMP tasks are a potenEally useful feature – work in progress!

A Centre of Excellence in Computational Biomedicine

e-Seminar series

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 823712

The e-Seminar series is run
in collabora2on with:

hFps://insilicoworld.slack.com/
archives/C0151M02TA4

Q&A

To pose a question, please click on the (?) symbol and send
your question via the 'Ask the staff a question' panel

Thank you for participating!

…don’t forget to fill in our feedback questionnaire…

Visit the CompBioMed website (www.compbiomed.eu/training)
for a full recording of this and other e-Seminars,

to download the slides
and to keep updated on our upcoming trainings

A Centre of Excellence in Computa3onal Biomedicine

e-Seminar series

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 823712

The e-Seminar series is run
in collabora2on with:

hFps://insilicoworld.slack.com/
archives/C0151M02TA4

http://www.compbiomed.eu/training

• Improves performance of your biomedicine applications on high
performance computers
– Experts in both biomedical applications and high performance

computers
– Make your biomedicine applications run in parallel
– Improving the scalability of those already parallelised

• www.compbiomed.eu/compbiomed-scalability-service

32

CompBioMed’s Free Scalability Service

• Contact for Free Service
– General technical questions

• Slack: #scalability channel of the InSilicoWorld Community of Practice

• Email: compbiomed-support@ucl.ac.uk
– Full service

• Application Form or light-weight web form
– Formal collaborative relationship with CompBioMed Centre of Excellence

• Application and Data Security
– Great care when adapting your applications and managing your data

• Our Data Policies cover Data Privacy, Data Security and Research Data Management

33

www.compbiomed.eu/compbiomed-scalability-service

The first community entirely on in silico medicine on Slack
www.insilico.world/community

More than 500 experts have already joined the community and its channels
34

InSilicoWorld Community of Practice

• The community is invitation only: in this way we ensure only
interested experts have accessExpertise

• Join teams and collaboratively work on shared goals, projects,
concerns, problems or topicsCollaboration

• A pre-competitive space where experts from academia, industry,
and regulatory agencies can ask for and exchange advicesSafe space

http://www.insilico.world/community

InSilicoWorld Members

• Large Biomedical Companies
Medtronic, Smith & Nephew, Pfizer, Johnson and Johnson, Innovative Medicine Initiative, CSL
Behring, Ambu, RS-Scan, Corwave EN, Zimmer Biomet, Novartis, Bayer, ATOS, Biogen, Agfa,
Icon PLC, Amgen, ERT, Exponent, etc.

• Biomedical SMEs
Nova Discovery, Lynkeus, Obsidian Biomedical, Quibim, Mediolanum Cardio Research, Voisin
Consulting, CRM-Microport, Mimesis srl, H. M. Pharmacon, MCHCE, etc.

• Independent Software Vendors
Ansys, In Silico Trials Technologies, 3DS, KIT, ASD Advanced Simulation & Design GmbH,
Kuano-AI, Aparito, Chemotargets, Digital Orthopaedics, ExactCure, Materialise, Bio-CFD,
Matical, FEOPS, 4RealSim, Exploristics, Synopsis, Virtonomy, Cad-Fem Medical, etc.

• Regulators and Standardisation Bodies
FDA, DIN, BSCI China, NICE, Critical Path Institute, ACQUAS, etc.

• Clinical Research Institutions
Istituto Ortopedico Rizzoli, Sloan Kettering Cancer Center, Royal College of Surgeons Ireland,
Gratz University Hospital, Charite Berlin, Centre Nacional Invesigaciones Oncologicas, Aspirus
Health, Universitätsklinikum des Saarlandes, European Society for Paediatric Oncology, etc.

